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Overview

We are interested in a setup in which a sequence of measurements is performed on a single system, thereby
producing a sequence of corresponding measurement outcomes. Measurements that can be performed on this
system are collected into a set X, and the output of measurement m is taken to lie in the set Om. Writing
X∗ for the set of all finite sequences of elements of X, we collect the sequences that can be performed on
the system into a down-closed subset Σ ⊆ X∗ (with respect to the prefix order on X∗). We group this data
together into a tuple M = ⟨X,Σ, O⟩, which is called a temporal measurement scenario. A pair ⟨m, o⟩
with m ∈ X and o ∈ Om is called a measurement event, and we write ∆M for the set of all measurement
events associated with M.

In contextuality scenarios, which are a spatial analogue of the current setup, there is a clear way in which to
define deterministic classicality of a system: it corresponds to a measurement m ∈ X being assigned the same
outcome regardless of which other measurements are performed simultaneously; see e.g. the sheaf-theoretic
treatment of contextuality [1]. For probabilistic systems, classicality in a sheaf approach sense is synonymous
with the existence of a probabilistic local hidden variable model. That the assumptions of classicality hold
experimentally can be guaranteed for Bell scenarios by appealing to special relativity, which has resulted in
‘loophole-free’ tests of Bell inequalities.

In the temporal case, assumptions of classicality are more subtle. The outcome of a measurement m ∈
X may in principle depend on any of the previously performed measurements and their outcomes. So, a
deterministic behaviour of the temporal system is instead described by a function

s : Σ → O :: σ 7→ o

which sends each sequence σ ∈ Σ to an outcome s(σ). The interpretation is that the last measurement of σ
obtains the outcome s(σ) when performed in the sequence σ, allowing for outcomes to depend on the whole
history.1We refer to such functions as global strategies, and write S(Σ) for the set of all global strategies
over Σ.

In practice, unbounded signalling of information from the past is not realistic and is limited by thememory
of the system. For finite state machines—a paradigm of sequential computation—this limitation comes from
the size of the state set. It therefore makes sense in this temporal setting to speak of classicality with respect
to some memory bound. We consider a model of memory in which the system can only store a subset of the
past measurements and their outcomes. We focus on three special cases, parametrised by for a fixed k ∈ N:

1. the system remembers the k immediately preceding measurements;

2. the system remembers up to k of the previous measurements;

3. the system remembers the k immediately preceding measurement events (i.e. measurements and out-
comes).

For example, given a sequence σ = m0 . . .mn, define lookbackk(σ) := mmax{n−k+1,0}...mn to be its suffix of
length k + 1 (if it exists). Item 1 requires that any strategy s ∈ S(Σ) satisfy

lookbackk(σ) = lookbackk(σ
′) =⇒ s(σ) = s(σ′).

We say that a strategy is lookbackk-consistent if it satisfies this property. We write Slookbackk(Σ) for the set of
lookbackk-consistent strategies on Σ, noting that for any k it holds that

Slookbackk(Σ) ⊆ Slookbackk+1
(Σ).

1Here, outcomes only explicitly depend on prior measurement choices and not on their outcomes. However, adding dependence
on previous outcomes for s would be pointless: if a system is responding deterministically, knowing the full history of measurements
is enough to reconstruct all past outcomes, and so they need not be included explicitly.
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We similarly define functions Θk : Σ → X∗ and lookback
(e)
k : Σ× S(Σ) → ∆∗

M such that a strategy acting

according to item 2 is Θk-consistent, and according to 3 is lookback
(e)
k -consistent (the superscript indicating

that it is the past k measurements events). We denote the associated subsets of strategies SΘk
(Σ) and

S
lookback

(e)
k

(Σ).

Now, given a measurement scenario M, performing a particular sequence of measurements σ ∈ Σ produces
a probability distribution eσ on corresponding output sequences, i.e. on assignments of outcomes to the set
↓ σ of prefix sequences of σ. The collection e = (eσ)σ∈Σ is called an empirical model.

An empirical model which for each σ has support only on the lookbackk-consistent strategies is said to
be lookbackk-consistent, and we write EM(lookbackk)(M) for the convex set of such models. We can make a

similar definition based on Θk and lookback
(e)
k . Note that Θk-consistent empirical models are restricted to use

the available memory according to the fixed choice of function Θk. More generally we would like to describe
systems which may respond with any strategy that stores at most k of the past measurements. To this end,
we say that a model is Lk-consistent if every strategy in its support is Θk-consistent for some Θ.

So, in general, we write EM(F )(M) for the set of F -consistent empirical models with F ∈ {lookbackk, Lk,

lookback
(e)
k }. The function F introduces additional no-signalling constraints for the empirical model e, which

go beyond the usual arrow of time constraints and are not captured by restrictions of the presheaf DR ◦ SF .
Such constraints reflect the fact that signalling from the past has been in some way restricted.

While in the spatial case classicality is synonymous with the existence of a local hidden variable theory,
here we take classicality of an F -consistent empirical model to mean realisability by a classical machine EF

that produces F -consistent strategies according to some probability distribution on global strategies h ∈
DR ◦ SF (Σ). We say that e is EF -classical.

2Thus for e EF -nonclassical, local probability distributions are
consistent with those that EF produces, but there is no extension of these to a consistent global distribution (as
with contextuality). Note that defining classicality with respect to memory bounds on a classical machine, as
captured by a restriction on strategies F , avoids hypothesising about what it means for temporal correlations to
be classical (as in Leggett and Garg’s macrorealistic assumptions, which suppose that noninvasiveness should
hold). This circumvents a debatable philosophical issue by appealing to resource-theoretic notions, where in
this case the resource of interest is memory.

An advantage of casting the setup in a sheaf-theoretic framework is that when the system stores only
measurements in memory, i.e. in the cases F = lookbackk or F = Lk, we are able to map temporal measurement
scenarios to a particular type of contextuality setup, in which correlations are no longer temporal but spatial.
Nonclassical temporal empirical models are then the pullback of contextual empirical models on this image
scenario. We first show that strategies f ∈ SF (U) are in one-to-one correspondence with sections s ∈ E(CF (U)),
where

CF (U) := {F (σ)|σ ∈ U}.
Calling this bijection α, then given an empirical model {wC}C∈ΣCF (M)

we define a temporal empirical model

eC(f) := wCF (C)(α(f)).

This forms the first theorem of the paper, stated below.

Theorem 1. For F ∈ {lookbackk, Lk} there is a map CF from temporal measurement scenarios to contextuality
measurement scenarios, such that empirical models w ∈ EM(CF (M)) can be pulled back via C∗

F to F -consistent

empirical models C∗
Fw ∈ EM(F )(M) on the temporal measurement scenario M. This map preserves and

reflects nonclasicality, meaning that an empirical model w on CF (M) is contextual if and only if C∗
Fw is

EF -nonclassical.

Vorob'ev’s theorem and quantum advantage

The advantage of mapping an empirical model of the temporal type to one of the contextual type is that
the latter have been extensively studied in the sheaf-theoretic approach. Therefore, there are a number of
well-developed tools we can readily utilise on contextuality scenarios. Crucially, as the map both preserves
and reflects contextuality, it can be used to transfer results, allowing us to say something in turn about the
classicality of empirical models in the original temporal scenario.

With this in mind, we recall an application of Vorob'ev’s Theorem, originating in game theory [3], to
contextuality measurement scenarios, which was studied in [4]. This theorem characterises the contextuality
measurement scenarios that admit contextual empirical models.

2An EF machine is for example a finite state machine which uses its state set to store past measurements and outcomes. Note
that contextuality and finite state machines has been studied too in [2].
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Theorem 2 ([4, 3]). Let M = ⟨XM,ΣM, OM⟩ be a contextuality measurement scenario where Σ is a simplicial
complex representing the compatibility relation of elements in X. Then all empirical models defined on M are
non-contextual if and only if ΣM is acyclic.

Acyclicity here means that one can remove the measurements from the scenario one by one in such a way
that the removed measurement at each stage belongs to a single maximal context, i.e. all the measurements
compatible with it are jointly compatible.

The following corollary follows straightforwardly from Theorems 1 and 2.

Corollary 3. Let M be a temporal measurement scenario. Every F -consistent empirical model on M is
EF -classical if and only if the corresponding contextual measurement scenario CF (M) has acyclic simplicial
complex ΣCF (M).

Note that we obtain both directions of Vorob'ev’s Theorem, so that a non-acyclic ΣCF (M) implies that

there exists an EF -nonclassical empirical model e ∈ EM(F )(M).
Although the constructed map breaks down when memory storage of outputs is allowed, we are nevertheless

able to show that ΣClookbackk
(M) not acyclic also implies the existence of an empirical model that is lookback

(e)
k -

consistent but E
lookback

(e)
k

-nonclassical. This is done by constructing an empirical model which is deterministic

at certain measurements, so that allowing for strategies which store outputs of these measurements is not more

advantageous. This extends one direction of Corollary 3 to lookback
(e)
k −consistent strategies.

Theorem 4. Let M be a temporal measurement scenario. If the measurement scenario Clookbackk(M) has a

non-acyclic simplicial complex, then there exists a lookback
(e)
k -consistent empirical model on M which cannot

be generated by a classical machine E
lookback

(e)
k

.

Conclusion and Future Work

The assumption underlying the F -consistent models we consider is that the system at any given time can only
remember some subset of the past measurements that have been performed and outputs obtained (as specified
by F ). In our paper we show that

1. When only measurements are stored, we can map temporal scenarios to contextuality scenarios via CF in
way that preserves and reflects nonclassicality. This allows the identification of empirical models which
have local support on deterministic strategies that a classical machine EF can produce, but which are
inconsistent with any global distribution on such strategies. We call this behaviour EF−nonclassial.

2. This map does not work when outputs are stored. Nevertheless,

(a) An empirical model generated by a classical machine E′
F ′ that can store past measurements and

their outcomes can be realised by a machine EF that stores only measurements if one increases the
allowed number of stored measurements. We analyse this trade-off for certain examples of empirical
models.

(b) We can for any measurement scenario which admits Elookbackk -nonclassical empirical models find at
least one empirical model which is also E′

lookback
(e)
k

−nonclassical.

In future work we hope to extend these notions to causal scenarios studied in [5], including the causal Bell
scenarios studied in [6].
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