
Causal influence versus signalling for interacting
quantum channels

Kathleen Barsse1,2, Paolo Perinotti1, Alessandro Tosini1, and Leonardo Vaglini1

1QUIT group, Physics Dept., Pavia University, and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy
2Université Paris-Saclay, ENS Paris-Saclay, 91190, Gif-sur-Yvette, France

This extended abstract is based on the preprint available at https://doi.org/10.48550/arXiv.
2309.07771, to which we refer for the proofs of the result stated here.

1 Brief summary
The literature on causal networks, and in particular quantum causal networks, is now flourishing, and at-
tracting increasing interest in the quantum information and computation community, as well as in the foun-
dation community. Up to now, the focus of the analysis of causal relations in quantum networks has been
to establish whether a causal influence from a node A to a node B holds or not [1–29]. In quantum theory,
this is equivalent to establishing whether A is an input subsystem and B an output subsystem of a channel
that allows for signalling from A to B. In a wider context of general theories—and specifically in classical
information theory—however, one might have causal influences that manifest themselves in the creation of
correlations that do not allow for signalling, thus making the latter strictly stronger than causal influence.
In this respect, a question of interest that is largely unexplored concerns the relation between the strength of
correlations and the amount of signalling. We address the last question by defining quantifiers of signalling
and causal influence and studying relations between them. In particular:

• we prove that a unitary interaction allows for a small amount of signaling if, and only if, it induces a
small causal influence;

• we explicitly compute the signaling and the causal influence in the case of the quantum Cnot: the
signalling is strictly smaller than the causal influence, while the latter attains its maximal value, thus
indicating that the “extra” causal effect beyond signalling has to be sought in the leverage that it
enables on correlations.

These results provide new tools for the study of quantum causal networks, allowing both the extension
of fundamental results, e.g. in the form of stability analysis, and practical applications of quantum causal
networks that might require a precise estimate of the quantities discussed above, e.g. in the security analysis
of cryptographic protocols.

2 Methods and Results
In quantum theory an interaction between two systems, say A (controlled by Alice) and B (controlled by
Bob) is represented by a bipartite channel C (i.e., a completely positive trace preserving map) sending
quantum states of the Hilbert space A⊗B to quantum states of the Hilbert space A′⊗B′, with⊗ denoting
the usual Hilbert spaces tensor product. We will write C(C,C′) for the set of channels from C to C′

(shortened to C(C) when C′ = C), and U(C) for that of unitary channels on system C. We will adopt the
following graphical representation for bipartite quantum channels

A

C
A′

B B′ .
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A bipartite channel C ∈ C(AB,A′B′) models an interaction between the quantum systems of the two
users, Alice and Bob, and we will analyse it in terms of causal relations that it produces between Alice’s
input and Bob’s output. As noticed by several authors [29, 30], the study of causal relations generated by
non reversible channels may be ambiguous. Indeed, any channel C can be realized in a non unique way as
a reversible channel U by discarding an appropriate environment system. It happens that the occurrence
of causal relations between agents actually depends of the specific initial state of the environment involved
in a reversible dilation. Accordingly, causal relations are unambiguously identified once the description
is expanded such that all relevant systems are included, thus dealing with an “isolated system". For this
reason we focus on the evolution of isolated quantum systems, thus exploring the causal relations mediated
by unitary channels.

An extreme case is that where systems A and B are separately isolated, thus non interacting. Clearly,
in this case the evolution channel cannot produce any causal relation between Alice and Bob. On the other
hand, if one e.g. swaps systems A and B, the result is that the swap channel mediates as much causal in-
fluence as one can possibly expect. Now, still on the same line of thought, one can expect that a “little”
interaction induces “little” causal effects. In order to prove this intuition we start by introducing two func-
tions on the set of quantum unitary channels, denoted by S(U) and C(U), that quantify the amount of
signalling and that of causal influence from Alice to Bob for the channel U , respectively.

Signalling, that is communication from Alice to Bob (or vice-versa), is based on the dependence of
the local output system B′ of Bob’s on the choice of the local input system A of Alice’s: in general, Alice
can influence the outcome probabilities for Bob’s local measurements on B′, by varying her choice of
intervention on system A. If Bob’s output at B′ does not depend on the state of Alice’s input at A, then
we say that U is no-signalling from Alice to Bob. One can straightforwardly prove that this condition
corresponds to the following identity

A

U
A′

I

B B′ =

A
I

B C B′ , (1)

for some channel C ∈ C(B,B′), where the trivial POVM I on system A (or A′) in the diagram represents
the partial trace operator TrA (or TrA′ ) that describes discarding A (or A′). On this basis, given a channel
U , we quantify its signalling from A to B′ via the function

S(U) := inf
C∈C(B,B′)

‖(TrA′ ⊗IB′)U − TrA⊗ C‖�, (2)

where IB′ denotes the identity channel on system B′, ‖X‖� := supE supρ∈St(EA)‖(IE ⊗ X )(ρ)‖1 is the
diamond norm of the hermitian-preserving map X in the real span of C(A,A′), and ‖ · ‖1 denotes the
trace-norm on the space of operators on the Hilbert space E⊗A′, i.e. ‖X‖1 := Tr[(X†X)1/2].

The signalling condition thus boils down to the possibility of using U to send a message from Alice to
Bob, but in a general theory of information processing this does not exhaust the ways in which an inter-
vention on system A can causally affect the system B′. Indeed a local operation involving only system A
before the reversible transformation U can influence the output correlations between Alice and Bob. This
possibility has been extensively explored in Refs. [29, 31] and encompassed in the notion of causal influ-
ence of system A on system B′. The definition (by negation) of causal influence is the following. Given
the unitary U ∈ C(AB,A′B′), system A has no causal influence on B′ if for every A ∈ C(A) one has

A′

U−1
A A A

U
A′

B′ B B′
=

A′

A′ A′

B′

for a suitable local operationA′ ∈ C(A′). The above condition has been proved [29] to be strictly stronger
than no-signalling for a general information theory. Indeed on one hand it prevents Alice to signal to Bob,
but it also ensures that the evolution U cannot “propagate” the effect of any local operation of Alice (on
systemA) to alter the correlations with the output system of Bob’s created by U . Remarkably, in Ref. [29] it
was also proved that in quantum theory no-causal influence coincides with no-signalling, while in classical
information theory there exist examples of channels that cannot be used for transmitting signals to a given
subsystem but still can be used to influence its correlations. In other words, there exist no-signalling gates
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that have causal influence. As proved in Ref. [29], to verify if a channel has causal influence from A to B′
it is not necessary to check the factorization on the rhs of Eq. (2) for every local map A, but it is sufficient
to do it on a single probe corresponding to the swap operator between two copies of Alice’s input system
A: in formula, U has no causal influence from A to B′ if and only if

T (U) = T ′ ⊗ IB′ , T (U) := (IA ⊗ U)(S ⊗ IB)(IA ⊗ U−1), (3)

where S ∈ C(AA) is the swap channel given by S(ρ) := SρS, with S |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 for any pair
|φ〉 , |ψ〉 ∈ A, and T ′ is a suitable channel in C(AA′). We exploit this criterion to define a quantifier for
the causal influence from A to B′ via the following function

C(U) := inf
T ′∈C(AA′)

‖T (U)− T ′ ⊗ IB′‖�. (4)

Aswementioned earlier, a non trivial fact about quantum theory is the equivalence between no-signalling
and no-causal influence, that can now be expressed as

S(U) = 0⇔ C(U) = 0. (5)

It is interesting to observe a striking consequence of Eq. (5). We know that causal influence includes
signalling as a special case, keeping track also of the correlations that the channel U can generate between
Bob’s and Alice’s systems at its outcome. On one side it is possible to have signalling without inducing
any correlations, an elementary example being U ∈ U(AB) with A ≡ B and U = S coinciding with the
swap gate: while signalling from Alice to Bob (and viceversa) is obvious, since U exchanges their systems,
if A and B are uncorrelated at the input they will remain uncorrelated after the swap. On the other hand,
a channel U cannot generate correlations between Alice and Bob without allowing also for signalling: it is
impossible to have C(U) > 0 and S(U) = 0 simultaneously.

The first question answered is whether the above equivalence (5) between no-signalling and no-causal
influence is robust to perturbations of the ideal case where the channel does not mediate causal relations.
State of the art knowledge on this subject is null as, in principle, the relative magnitude of the two quantities
may arbitrarily fluctuate as one departs from the condition expressed in Eq. (5).

This is indeed not the case, as our result is the bound

S(U) ≤ C(U) ≤ 2
√
2S(U) 1

2 . (6)

These inequalities, proved in the following, establish the robustness of the equivalence between signalling
and causal influence, that can be summarised in the sentence “little signalling is equivalent to little causal
influence”.

Notice however that, due to the singularity of the derivative of x1/2 in x = 0, in a neighbourhood
of S(U) = 0, one can have a large increase in causal influence with a negligible increase in signalling.
This observation can be seen as spotlighting the remnant of the non-equivalence of the two notions that we
remarked in the classical case. The second main result is indeed the proof that causal influence and sig-
nalling are not equal. The mismatch between the two quantities is definitely established by their analytical
computation, provided in the following, for the quantum Cnot unitary channel:

C(Cnot) = 2 > 1 ≥ S(Cnot). (7)

This states that there exist interactions where Alice’s local operations have effects on Bob’s system that
“exceed” those on Bob’s local states. Such effects are not to be sought in communication capacity but in
the perturbation of Bob’s system correlations.
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