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Abstract

In this paper we study restricted classes of constant-depth threshold circuits recently intro-
duced by [Kum23] as a family that generalizes AC0. Denoting these circuit families bTC0(k) for
biased threshold circuits parameterised by an integer-valued bias k, we prove three hardness results
separating these classes from constant-depth quantum circuits (QNC0).

• We prove that the parity halving problem [WKS+19], which QNC0 over qubits can solve
with certainty, remains average-case hard for polynomial size bTC0(k) circuits for all k =
O(n1/(5d)).

• We construct a new family of relation problems based on computing mod p for each prime
p > 2, and prove a separation of QNC0 circuits over higher dimensional quantum systems
(‘qupits’) against bTC0(k) for the same range of bias.

We also prove tighter lower bounds on the size of bTC0(k) circuits that are required to solve the
relational problem with certainty, which we leverage to significantly reduce the estimated resource
requirements for potential demonstrations of quantum advantage of this form.

bTC0(k) circuits can compute certain classes of Polynomial Threshold Functions (PTFs), which
in turn serve as a natural model for neural networks and exhibit enhanced expressivity and com-
putational capabilities. Furthermore, for large enough values of k, bTC0(k) contains TC0 as a
subclass. The main challenges arise in establishing the classical correlation lower bounds, and in
designing non-local games with quantum-classical gaps in the winning probability in order to go
beyond qubits to higher dimensions. We address the former challenge by developing new, tighter
multi-switching lemmas for multi-output bTC0(k) circuits. We address the latter by analyzing a
new family of non-local games defined in terms of mod p computations, characterized by an expo-
nential difference between their classical and quantum success probabilities. These technical tools
may be of more general and independent interest.

Keywords. Quantum algorithms, Circuit complexity, Shallow-depth circuits, Non-local games, Re-
source Estimates.

1 Introduction

Realizing the theoretical gains promised by landmark quantum algorithms such as integer factorisation
or search is challenged by the constraints of existing quantum hardware, requiring extensive resources
and fault-tolerant operations for practical implementation. This challenge has shifted the focus towards
the study of shallow-depth quantum circuits that can in principle be implemented on near term
hardware. The seminal work of Bravyi et al. [BGK18] exhibited a relational problem that can be
solved by constant-depth quantum circuits consisting only of 2-qubit Clifford gates, which no constant
depth classical circuit with bounded fan-in gates can solve. This first unconditional, i.e. without any
complexity theoretic assumptions, separation between QNC0 and NC0 spurred renewed interest in the
field, and was followed by an extension of this result to a separation of QNC0 against classical circuits
of unbounded fan-in (AC0) [WKS+19], average-case hardness [Gal19; WKS+19; CSV21], interactive
protocols separating QNC0 from classical logarithmic-depth circuits of bounded fan-in (NC1) [GS20],
the case of noisy quantum circuits requiring fault-tolerance and error correction [BGK+20; GJS21;
CCK23], and sampling problems [WP23].
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A natural question that arises is whether quantum circuits of constant depth and fan-in can also
perform tasks that classical constant-depth circuits of threshold gates cannot. Such threshold circuits
form the class TC0, and are a canonical model for neural networks [SB91; MP69; Mur71]. Here we
are faced with the frontier of classical theoretical computer science, where even cutting-edge circuit
lower-bound techniques falter.

2 Background and context

In this paper we focus on constant-depth classical and quantum circuit classes with multiple output
bits. In particular, our interest is in relational problems, wherein a circuit may map an n-bit input
string to one of many possible valid m-bit output strings. We define QNC0 to be the class of compu-
tational problems R : {0, 1}n → {0, 1}m solvable by quantum circuits with a constant depth using a
polynomial number of gates of bounded fan-in (i.e. every gate has a fixed constant number of input
and output wires) drawn from a finite, universal quantum gateset.

Our contributions start by comparing QNC0 and a newly introduced classical circuit class [Kum23]
that interpolates between AC0 and beyond TC0 through the use of an integer parameter k. More
specifically, defining k-biased Polynomial Threshold Functions (PTFs) as boolean functions of the
form

f(x) =

{
P (x),

∑n
i=1 xi ≤ k

1,
∑n

i=1 xi > k
; with P : Fn

2 → F2 a polynomial over F2 = {0, 1}, (2.1)

we set bTC0(k) to be the class of constant depth circuits composed of unbounded fan-in gates each
of which may compute a k-biased PTF. k defines the activation region of the PTF or neuron. When
k = 0, we recover unbounded fan-in AND and OR gates, and bTC0(0) corresponds to AC0.

3 Main results

Our first result is an unconditional separation between constant-depth quantum circuits and biased
polynomial threshold circuits, both in the exact and average-case hardness scenarios.

Theorem 3.1 (Informal, see formal version in the full text.). For every large enough input size n ∈ N,
there exists a relation R ⊂ {0, 1}n × {0, 1}m with m = O(n log n) such that on input any x ∈ {0, 1}n,
a QNC0 circuit consisting of only subquadratically many (o(n2)) gates can output y ∈ {0, 1}m such
that (x, y) ∈ R with certainty. Conversely, the size s of any bTC0(k)/rpoly circuit of depth d that
outputs any valid y is lower bounded as shown in the table below, for both exact solutions and for
arbitrary success probabilities, in the context of average-case hardness. Here /rpoly means the circuit
is randomised, i.e. has access to polynomially many random input bits.

bTC0(k)/rpoly k = 0 (≡ AC0/rpoly) k = n1/5d

Exact hardness s = Ω

(
exp

(( √
n

(logn)3/2+O(1)

) 1
d−1

))
s = Ω

(
exp

((
n3/10

(logn)3/2+O(1)

) 1
d−1

))
Average-case

hardness
- Pr[Success] ≤ 1

2 + exp
(
−Ω

(
n3/5−O(1)

(log s)2d−1

))
The standout consequence of theorem 3.1 is that bTC0(k)/rpoly with k = O(n1/d) requires su-

perpolynomial size circuits to solve a relational problem that QNC0 circuits solve efficiently. The
class bTC0(k)/rpoly not only serves as a model for neural networks, but even a single gate of such
a circuit (i.e. a single k-biased PTF), with k = polylog(n), would also require superpolynomial (i.e.
Ω(npolylog(n))) size AC0 circuits to emulate it; hence AC0 ⊊ bTC0(k) for k = ω(log n) [Kum23]. Notably,
our results do achieve a super-polylogarithmic value for k—demonstrating that theorem 3.1 extends
separations against AC0 from prior work to genuinely new and larger circuit classes. Furthermore, we
remark that it is the largest possible k for the type of relation problems considered—because for any
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larger k, bTC0(k) can in fact solve the problem with high probability and small circuit size. This hints
that we need completely new approaches in future work to improve our results.

The ‘exact case’ in theorem 3.1 refers to the scenario where we impose the bTC0(k) circuit to solve
the problem with certainty, matching the performance of the quantum circuit. For k = 0, this case
further yields us a new separation against AC0/rpoly with the tightest bounds demonstrated yet.

Our second contribution is to extend all the foregoing results beyond qubits to higher dimensions.

Theorem 3.2 (Informal, see formal version in the full text.). For every prime p ∈ N, there ex-
ists a relation Rp : Zn

p → Zm
p such there is a constant depth quantum circuit over (Cp)⊗n (i.e. n

‘qupits’) that has constant correlation with Rp, but in contrast only has exponentially small correla-
tion exp

(
−O(n3/5)

)
with any polynomial size bTC0(n1/5d) circuit.

Previous studies have suggested that non-local games with significant quantum-classical winning
probability gaps could give rise to computational separations between quantum and classical circuit
classes [Aas21]. However, such separations were not explicitly demonstrated. By proving theorem 3.2
we establish the existence of such a non-local game for each prime dimension and make use of them to
explicitly construct relational problems and quantum circuits that solve them with high correlation.
Our correlation measure is a generalisation of the usual correlation between Boolean functions to Zp,
taking into account ‘how wrong’ an output is: if R(x) = 2, then R̃(x) = 3 should intuitively be a worse
guess than R̃(x) = 4 (figure 5). These explicit separations not only clarify the theoretical landscape
but also hold practical relevance, as many quantum computing platforms naturally operate in higher
dimensions [RMP+22; GZC+22] offering promising avenues for demonstrating quantum advantage. In
addition, we note that these non-local games might be of independent interest as they could be used
in other quantum information processing tasks.

Resource estimation. In physical experiments that test this kind of unconditional separation, it is
important to pin down at what values of depth d and width n (i.e. number of input qubits) we observe
a transition in the circuit size; that is, at what depths and input sizes do the quantum advantages
kick in?

We leverage our exact-case hardness bound in theorem 3.1 to provide such estimates, bringing the-
oretical predictions closer to the capabilities of current quantum devices. For context, the transition
point for Shor’s algorithm is estimated to be ∼1,700 qubits, 1036 Toffoli gates, and a circuit depth of
1025 [CFS24], while for the HHL algorithm it is roughly 108 qubits and a depth of 1029 [SVM+17].
Recent advancements in quantum hardware favors larger devices (i.e. more qubits) over those with
prolonged coherence, and so there is a push towards shallower circuits [LJV+23; BEG+23]. Separa-
tions against NC0 are the most viable for near-term quantum devices, plausible with only hundreds
to thousands of qubits. The separation against AC0 circuit under average-case conditions and 2D
architectures in [WKS+19] could need roughly 1097 qubits to observe quantum advantage, diminish-
ing its near-term feasibility. However, by bounding the constant factors, optimizing the parameters
and considering all-to-all qubit connectivity, this requirement could drop to 1021 qubits with depth-3
quantum circuits. For bTC0(n1/5d) circuits, the requirement is 1040 qubits. Our exact hardness re-
sults demonstrate that circuits with 1011 and 1022 qubits at depth 3 can establish quantum advantages
over AC0 and bTC0(n1/5d) circuits respectively, significantly lowering circuit requirements and paving
the way for a progression of quantum advantage experiments. Our estimates do not represent lower
bounds, as better proof methods and parameter optimization remain possible.

Technical contributions. We develop a novel multi-switching lemma for bTC0(k) circuits (theo-
rem 3.1) which we derive by inductive methods, as an application we prove depth reduction lemmas
for relation-type problems. While we use these technical tools to prove our lower bounds in theo-
rem 3.1, they could be of independent interest, as they apply to circuit models of neural networks
with real-world applications involving string-to-string mappings.

Note that the essence of switching lemmas has remained unchanged since their introduction in the
80s, primarily addressing separations within the AC0 class. The significance of our work is underscored
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by the fact although Kumar’s introduction of a class between AC0 and beyond TC0 [Kum23] offered
new possibilities, the switching lemmas in that paper are insufficient for relation-type problems, and
in fact do not even yield separations between QNC0 and AC0.

For our new exact-case hardness results in theorem 3.1, we start by reducing the initial bTC0 circuit
to m independent decision trees of depth d, each corresponding to an output bit. Our innovation is
to consider all valid outcomes of the output bits in our candidate relational problem, described by
Algebraic Normal Forms [Don14], and then lower bound the number of degree-two terms in this
representation. We then limit the number of terms each local decision tree can generate, setting
bounds on their expressivity and exact problem-solving ability, which reflects the capacity of the
initial circuit to solve the problem exactly.

Finally, for all prime qudit dimensions, we constructively prove the existence of non-local games
that classical strategies can solve, at best, with an exponentially lower success probability compared
to their quantum counterparts. Our approach accommodates non-uniform input distributions and
circumvents the intricate task of computing explicit bounds for each game while providing equivalent
separations. This challenge is highlighted in previous studies, which relied on established quantum-
classical separations in non-local games [BGK18; WKS+19], fundamental for the type of computational
separations presented in this text and previous work in the average-case hardness setting. Additionally,
very few extensions of the qubit case to higher dimensions were known before our work [Law17].

In our correctness proof of the candidate quantum circuit that solves the qudit relational problem,
we have incorporated a technique to efficiently describe the support of standard measurement outcomes
of local unitary (LU)-equivalent generalized (p-dimensional) GHZ states with a dependence on the
phases (lemma 4.21). This allowed us to incorporate a correction function for the output string, and
ascertain the success probability of the quantum circuits in an elegant manner.

4 Related work

In the table below, we present a comparison to some of the prior work on unconditional separations
between classical and quantum circuit classes that we outlined in the introduction.

Problem Advantage
against

Geometry Higher di-
mensions

Average c.
hardness

Noise re-
silience

[BGK18] 2D HLF NC0/rpoly 2D ✗ ✗ ✗

[WKS+19] PHP AC0/rpoly 2D ✗ ✓ ✗

[BGK+20] MSP NC0/rpoly 1D ✗ ✓ ✓
[CCK23] TELEP AC0/rpoly 1D ✗ ✓ ✓

Our
work

ISMRP bTC0(k)/rpoly 2D, 3D,
. . .

✓ ✓ 3

5 Outlook

Our work extends previously known results on unconditional shallow-depth circuit separations to larger
classical circuit classes and higher dimensions (qupits), while also pointing out potential quantum
advantage experiments. It naturally raises many interesting questions for further work. In particular,
there are problems that bTC0(k) circuits for k = n1/d can solve but AC0[p] circuits cannot, such as
MOD p operations over n1/d bits [Smo87]. This indicates the potential for establishing unconditional
separations between QNC0 circuits and AC0[p] for any prime p. Our results might simplify existing
conditional results by eliminating the necessity for interactivity or advice in proving such separations.

Furthermore, our work achieves near-optimal separations concerning the circuit class considered
using non-adaptive MBQC-type quantum circuits. This suggests that to attain larger separations,
such as with TC0, we must either identify harder problems solvable in this setting or consider more
advanced QNC0 circuits, such as constant-depth adaptive MBQC circuits [BKM+24].

Additionally, we highlight the potential of investigating novel higher-dimensional error-correcting
codes (i.e., beyond the qubit case) [ABC+14] to understand the noise resilience of theorem 3.2.
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