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1 Introduction

Two very basic constructions involving general probabilistic models are the for-
mation of coarse-grained versions of experiments, and the formation of branching
sequential experiments. The latter allows for the conditioning of states on the
results of previous measurements. When one condition on the results of di�erent
coarse-grainings of the same previous experiment, the possibility of interference
e�ects arises. Both constructions can be understood as monads on a suitable
category Prob of (general) probabilistic models. Moreover, these are connected
by a distributive law, allowing for a composite monad describing the closure of
a probabilistic model under both coarse-graining and sequential measurement.
Algebras for all three monads are discussed. Under weak additional assump-
tions, algebras for the coarse-graining monad are always coherent and algebraic,
and thus give rise to complete orthomodular posets.

Algebras for the combined monad appear particularly interesting. For one thing,
they allow for interference e�ects, in a sense that includes quantum interference
as a special case. Subject to the weak conditions mentioned aove, these models
give rise to complete orthomodular posets carring an associative binary opera-
tion distributing over orthogonal joins.

What follows is a detailed sketch. A more complete account will appear else-
where.

2 Probabilistic Models

Di�erent authors mean slightly di�erent things by a �general(ized) probabilistic
theory". The framework sketched here draws on work of Foulis and Randall
in the 1970s and 80s (see, e.g., [6, 7]), enhanced with some category-theoretic
ideas. General references for this section are the survey papers [3, 15].

A test space is a nonempty collection M of nonempty sets E,F, ..., each re-
garded as the outcome set of some operation, experiment, or test. The set
X :=

⋃
M is the outcome-space ofM. A probability weight onM is a function

α : X → [0, 1] summing to unity on each test. A probabilistic model � or simply
a model, for short � is a pair A = (M,Ω) whereM is a test space and Ω is a
distinguished set of probability weights onM. I writeM =M(A), X = X(A),
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and Ω = Ω(A) to indicate the test space, outcome-space, and and state space
of a model A. Note that if M is any test space, we have an associated model
(M,Pr(M)) where Pr(M) is the set of all probability weights onM.

Standing Assumption: To avoid trivialities, I will make it a standing assumption
that the set of states Ω is positive, meaning that for every x ∈ X, there is at
least one α ∈ Ω with α(x) > 0. It follows that M is irredundant, that is, an
antichain: if E,F ∈M and E ⊆ F , then E = F . (Note that this also constrains
the set of test spaces I consider, since there are simple examples of test spaces
M with Pr(M) = ∅.)

The following examples indicate how this framework accommodates both clas-
sical and quantum probability theory.

Example 1: classical models Let (S,Σ) be a measurable space. The set
M(S,Σ) of countable measurable partitions of S is a test space. The probability
weights on this correspond in an obvious way to probability measures on (S,Σ).
A classical probabilistic model is one of the form (M(S,Σ),Ω) where Ω is a set
of probability measures on (S,Σ).

Example 2: Hilbert models If H is a Hilbert space H, let X(H) denote the
unit sphere of H and F(H), the collection of frames (unordered orthonormal
bases) for H, regarded as a test space. Every density operator W on H gives
rise to a probability weight on F(H) de�ned by αW (x) = 〈Wx, x〉 (Gleason's
Theorem asserts that if dim(H) > 2, then every probability weight has this
form.) By a Hilbert model, I mean a model (F(H),Ω) where Ω is a set of (states
associated with) density operators.

Example 3: von Neumann models Let A be a von Neumann algebra with-
out and let P(A) be its projection lattice. The set M(A) of countable (resp.,
�nite) partitions of unity in P(A) is a test space, and every normal (resp., ar-
bitrary) state f ∈ A∗ induces a probability weight on it. (If A has no type I2
factor, then conversely, every By a von Neumann model, I mean one of the form
(M(A),Ω(A)) where A is a von Neumann algebra and Ω(A) is a set of normal
states on A.

Events and Perspectivity An event for a test space M is simply an event
in the usual probabilistic sense for one of the tests in M; that is, an event is
a set a ⊆ E for some E ∈ M. We write E(M) for the set of all events fo M.
If α is a probability weight on M, we de�ne the probability of an event a in
the usual way, that is, α(a) =

∑
x∈a α(x). In particular, α(E) = 1 for every

test E ∈ M(A). Conversely, if E ∈ E(A) with α(E) = 1, then E is a test.
(Indeed, if E ( F ∈ M, then by our positivity assumption, there exists some
y ∈ F \ E, and thus, some state α ∈ Ω(A) with α(y) > 0, whence, α(F ) > 1, a
contradiction.)
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Two events a, b ∈ E(M) are orthogonal, written a ⊥ b, i� they are disjoint and
their union is still an event. If a ⊥ b and a∪b ∈M� that is, if a and b partition
a test � then a and b are complementary, and we write a co b. If two events
a, b are both complementary to an event c, we say that a and b are perspective,
and write a ∼ b.

Algebraic test spaces and orthoalgebras It is easy to check that if a ∼ b,
then α(a) = α(b) for all probability weights α on M. Also, owing to irredun-
dance, if a ⊆ b ∼ a, we have a = b. M is algebraic [15] i�, for all events
a, b, c ∈ E(M), if a ∼ b and b is complementary to c, then a is also complemen-
tary to c. If M is algebraic, ∼ is an equivalence relation on E(M), with the
feature that

a ∼ b ⊥ c ⇒ a ⊥ c and a ∪ c ∼ b ∪ c.

This makes it possible to de�ne a partial binary operation ⊕ on the set Π =
Π(M) of equivalence classes of events by setting

[a]⊕ [b] = [a ∪ b] when a ⊥ b.

The structure (Π,⊕) is then an orthoalgebra [?] called the logic of M. Every
probability weight on M descends to a probability measure on Π, and every
orthoalgebra arises as Π(M) for some algebraic test spaceM. (Indeed, if L is
an orthoalgebra, let D(L) denote the set of orthopartitions of its unit: this is an
algebraic test space, and L ' Π(D(L)).) We'll say that a model A is algebraic
i�M(A) is algebraic, in which case we write Π(A) for Π(M(A)).

Linearized Models and E�ect Algebras If A is a probabilistic model, let
V(A) denote the subspace of RX(A) spanned by A's state-space, Ω(A). Ordered
pointwise, V(A) is a conebase space: every element of V(A)+ is a non-negative
multiple of a probability weight, and every element of V(A) is the di�erence
of two elements of V(A)+. The dual, V(A)∗, of V(A), with the dual ordering,
is an order-unit space with unit e�ect u given by uA(α) =

∑
x∈E α(x) for any

E ∈M(A). A functional a ∈ E(A) with 0 ≤ a ≤ uA is called an e�ect, and the
collection [0, uA] of e�ects is a basic example of an e�ect algebra. Every event
a ∈ E(A) gives rise to an e�ect â by evaluation, i.e., â(α) = α(a), but in general
there will be e�ects not of this form.

3 Categories of probabilistic models

Probabilistic models can be made into a category in various ways, depending on
what kinds of maps one takes as morphisms (see, e.g., [6, 15]). The following
will be general enough for our purposes:

De�nition: If A and B are probabilistic models, a morphism from A to B is
a test-space morphism φ :M(A)→M(B) such that For each state β ∈ Ω(B),
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φ∗(β) := β ◦ φ belongs to V(A).

De�nition: Let A and B be probabilistic models. A morphism φ : A→ B is a
mapping φ : X(A)→ X(B) such that
(a) For each test E ∈M(A), φ(E) ∈ E(B);
(b) For all x, y ∈ X(A), x ⊥ y ⇒ φ(x) ⊥ φ(y);
(c) For each state β ∈ Ω(B), φ∗(β) := β ◦ φ belongs to V(A).

Remarks: Condition (a) implies that φ maps E(A) into E(B), giving us a functor
E : Prob→ Set. Condition (b) can be rephrased as saying that morphisms are
locally injective, i.e., injective on every test.

Clearly, the composition of two morphisms, whether of test spaces or of models,
is again morphism, and the identity mapping on outcomes provides an identity
morphism. Thus, we have a category, Prob, of probabilistic models and their
morphisms.

Conditions (a) and (b) together de�ne a reasonable notion of a morphism of
test spaces. Note that for models of the form (M,Pr(M)), condition (c)
is automatic. Thus, we also have a category Test of test space and test-
space morphisms, and an adjunction between these, given by the functor U :
Prob → Test taking A toM(A), and the functor PrTest → Prob takingM
to (M,Pr(M)) (and both acting as the identity on morphisms). It's easy to
check that Pr is left-adjoint to U .

We will be interested below in some special classes of morphisms. Speci�cally,

De�nition: A morphism A→ B is
(i) strong i� φ(E) ∼ φ(F ) for all E,F ∈M(A), and
(ii) test-preserving i� φ(E) ∈M(B) for every test E ∈M(A), and
(iii) an embedding i� test-preserving and (gloabally) injective.

Lemma 1: A morphism φ : A→ B is strong i� it preserves perspectivity, i.e.,

a ∼ b ⇒ φ(a) ∼ φ(b)

for all events a, b ∈M(A).

Proof: Clearly, perspectivity-preserving implies strong. For the converse, sup-
pose σ is strong. If a co c and c co b, then φ(a) ⊥ φ(c), φ(b) ⊥ φ(c), and
φ(a)∪ φ(c) ∼ φ(c)∪ φ(b). Hence, for some event e ∈ E(B), φ(a)∪ φ(c) co e and
φ(b) co φ(c) co e, whence, φ(a) ∼ φ(b) with axis φ(c) ∪ e.

It is straightforward that a test-preserving morphism is strong. The following
shows that left inverses of embeddings are test-preserving.

Lemma 2: Let φ : A→ B be an embedding, and let ψ : B → A be a morphism
with ψ ◦ φ = idB. Then ψ is test-preserving.
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Proof: If α ∈ Ω(A) and E ∈M(A), we have φ(E) ∈M(B), so

ψ∗(α)(φ(E)) = α(E) = 1

It follows that ψ∗(α) is a probability weight in Ω(B). Thus, if F ∈ M(B), we
have

α(ψ(F )) = ψ∗(α)(F ) = 1,

so ψ(F ) ∈M(A). �

It is also straightforward that if φ : A→ B and ψ : B → A are mutually inverse
morphisms, then φ : X(A) → X(B) is a bijection, ψ is its inverse, and both
φ and ψ are test-preserving. In other words, an isomorphism of models A and
B is just what we'd expect: a bijection X(A) → X(B) preserving tests, and
states, in both directions.

4 The Coarsening Monad

Operationally, it is always possible to �coarse-grain" a test E by partitioning it:
when an outcome of E is obtained, one records only the corresponding cell of
the partition.

De�nition: The coarsening of a test spaceM is the test spaceM# consisting
of all partitions of tests inM.

The outcome-set ofM# is E(M) \ {∅}. Every probability weight onM lifts to
a probability weight onM# given by α(a) =

∑
x∈a α(x), and every probability

weight onM# has this form for a probability onM. The coarsening of a model
A is the model A# where
(a) M(A#) =M(A)#

(b) Ω(A#) consists of all lifts of states in Ω(A) to probability weights
onM#(A).

There is a canonical embedding φ : A → A#, namely φ : x 7→ {x} for all
x ∈ X(A).

The following is straightforward:

Lemma 3: If A is algebraic, so is A#, and in this case there is an isomorphism
φ : Π(A) ' Π(A#) given by φ([a]) = [{a}] where [a] ∈ Π(A) is the perspectivity
class of a in E(A), and [{a}] ∈ Π(A#) is the perspectivity class of {a} in E(A#).

Lemma 4: Let φ : A# → A be a morphism such that φ({x}) = x for every
x ∈ X(A). Then
(a) φ is test-preserving
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(b) For all a ⊆ E ∈ M(A), (E \ a) ∪ {φ(a)} ∈ M(A). In particular,
{φ(a)} ∼ a.

Proof: (a) follows directly from Lemma (1). For part (b), let E′ = {a}∪{{x}|x ∈
E \ a}, and use the fact that φ is test-preserving. �

If φ : A → B is a morphism, then φ#(a) := φ(a) = {φ(x)|x ∈ a} de�nes a
morphism from A# to B#. It's easy to check that this yields an endofunctor #
on Prob. In fact, it is a monad. The unit and multiplication are given by the
morphisms

ηA : A→ A#, ηA(x) = {x}

and
µA : A## → A#, µA(a) =

⋃
a

for any x ∈ X(A) and a ∈ E(A##).

#-Algebras, Coherences, and Cohesions

Recall that an algebra for a monad T is an object A plus a morphism φ : T (A)→
A such that the diagrams

T 2(A) T (A)

T (A) A

(I)

µA

T (φ)

φ

φ and

A T (A)

A

(II)

idA

ηA

φ

commute. Unpacking this in the case where T = #, we �nd that a morphism
σ : A# → A turns A into a #-algebra i�

(i) σ(
⋃
i ai) = σ{σ(ai)} for jointly orthogonal sets {ai} of events;

(ii) σ({x}) = x for all x ∈ X(A).

Call such a morphism a coherence on A. A #-algebra, then, is a model with a
designated coherence.

Examples The classical model A(S,Σ) associated with a measurable space has
a coherence given by σ({ai}) =

⋃
i ai where {ai} is any pairwise-orthogonal

collection of nonempty sets ai ∈ Σ. The von Neumann model A(A) has a
coherence given by σ({pi}) =

⊕
pi where {pi} is any pairwise orthogonal family

of projections in A.
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Remark: In quantum-mechanical usage, in this last case ⊕ipi is a coherent com-
bination of the projections p ∈ a. The distinction is crucial in sequential experi-
ments, where interference e�ects only manifest themselves when one conditions
on coherent combinations [17]

By Lemma 4, a coherence σ is always test-preserving, hence, a strong morphism,
and satis�es σ(a) ∼ a for every a ∈ E(A). It follows that ifM(A) is algebraic,
σ also satis�es

σ(a) ∈ E ⇒ (E \ {σ(a)}) ∪ a ∈M(A). (1)

De�nition: A coherence σ on A satisfying (1) is a cohesion. A #-algebra (A, σ)
is cohesive i� σ is a cohesion.

Call a test space projective i� it satis�es the condition x ∼ y ⇒ x = y for all
outcomes x, y ∈ X(A). The test spaces M(S,Σ) and M(A) associated with
a measureable space or a von Neumann algebra are both projective, but the
frame-test space of a Hilbert space is not; neither, in general, is A#, even if A
is projective. The following is related to Theorem 117 in [15].

Lemma 5: Let (A, σ) be a #-algebra. The following are equivalent:

(a) A is cohesive and projective

(b) A is cohesive and for all a, b ∈ E(A),

a ∼ b⇒ σ(a) = σ(b) (2)

(c) A is algebraic and projective

Proof: The only nontrivial part is (b) ⇒ (c). If a, b, d ∈ E(A) with a ∼ b
and b co d, then σ(a) = σ(b) by (2). Since any coherence is test preserving,
σ(b) co σ(d), whence, σ(a) co σ(d), whence {σ(a), σ(d)} ∈ M(A). Since a ∼
σ(a) and σ is a cohesion, a ∪ {σ(d)} ∈ M(A). Since {σ(d)} ∼ d, the fact
that σ is a cohesion also gives us a ∪ d ∈ M(A). Thus, M(A) is algebraic.
To see that it's projective, observe that if x, y ∈ X(A) with {x} ∼ {y}, then
x = σ({x}) = σ({y}) = y. �.

Cohesions and Quantum Logic

Two further conditions on a test space that are important in connecting test
spaces to orthomodular structures are coherence and regularity. IfM is a test
space and a ⊆

⋃
M, let a⊥ denote the set of outcomes orthgonal to every

outcome in a. M is said to be coherent i�, for all events a, b ∈ E(M), a ⊆ b⊥

implies a ⊥ b, and regular i� a ∼ b implies a⊥ = b⊥. A coherent test space
is regular i� it is algebraic, and the logic of a coherent, regular test space is a
complete orthomodular poset (OMP) [15].
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De�nition: A model A is unital if, for ever x ∈ X(A), there exists a state
α ∈ Ω(A) with α(x) = 1, and strongly unital if for every pair of outcomes
x, y ∈ X(A) with x 6⊥ y, there exits a state α ∈ Ω(A) with α(x) = 1 and
α(y) > 0.

Note that if A is strongly unital, it is also projective, since x ∼ y implies x 6⊥ y.

Lemma 6: Let A be strongly unital. If A has a cohesion, thenM(A) is coherent
and regular, hence algebraic, and Π(A) is a complete OMP.

Proof: Let x ∈ a⊥. Then for every α ∈ Ω(A) with α(x) = 1, α(y) = 0 for every
y ∈ a, and hence, α(a) = 0. Thus, as σ(a) ∼ a, α(σ(a)) = 0. From strong
unitality, it follows that x ⊥ σ(a), whence, since σ is a cohesion, we have x ⊥ a.
Thus, M(A) is coherent. By Lemma 5, M(A) is algebraic, so it follows that
M(A) is also regular. �

5 The Compounding Monad

Given two models A andB, a simple model for a two-stage sequential experiment
is as follows. Let E ∈M(A); for each outcome x ∈ E, select a test Fx ∈M(B).
Perform the test E; upon obtaining outcome x, perform the pre-selected test Fx.
If this yields outcome y, record the pair (x, y) as the outcome of the two-stage
test. The outcome set for this experiment is then

⋃
x∈E{x}×Fx. We can de�ne

a model
−−→
AB, the forward product, of A and B [8] as follows: M(

−−→
AB) is the

collection of all such two-stage tests Note that then X(
−−→
AB) = X(A) × X(B).

Probability weights onM(
−−→
AB) are uniquely de�ned by pairs (α, β) where α ∈

Pr(M(A)) and β ∈ Pr(M(B))X(A) via the formula

(α;β)(x, y) := α(x)βx(y).

We take Ω(
−−→
AB) to consist of those weights (α;β) with α ∈ Ω(A) and βx ∈ Ω(B)

for all x ∈ X(A).

One can enlarge a model A to obtain a model, Ac, the compounding of A, that
is closed under the formation of sequential measurements. For test spaces, the
construction is due to Foulis and Randall [5, 4], and the extension to arbitrary
models is straightforward. The outcome-set X(Ac) is the free monoid X(A)∗ on
X(A) with identity element e (the empty string). We identify X(A) with the
subset of X(A)∗ consisting of length-one strings. M(Ac) is the smallest collec-
tion D of subsets of X(A)∗ containingM(A) and closed under the formation of
sets of the form

⋃
x∈E xFx where E ∈ D and, for every x ∈ E, Fx ∈M(A). By

construction,M(A) ⊆M(Ac). Every set E ∈M(Ac) consists of reduced words
of some bounded length (since sets inM(A) have length 1 and the collection of
sets bounded in this way has the required closure property).
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To complete the description of the model Ac, we need to specify the states.
Probability weights onM(Ac) are associated with transition functions f : X∗×
X → [0, 1]: one de�nes a probability weight ωf recursively by ωf (e) = 1,
ωf (ax) = ωf (a)f(a, x). We say that ωf is a state of Ac i� f(a, x) ∈ Ω(A) for
every a ∈ X∗.

It is not hard to check that if A is unital, strongly unital, or algebraic, then so
too is Ac. A morphism φ : A→ B naturally extends to a morphism c(φ) = φc :
Ac → Bc, given by

φc(x1 · · ·xn) = φ(x1) · · ·φ(xn)

with φc(e) = e. Note that if ω = ωf ∈ Ω(Bc), then

φc∗(ωf )(ax) = ωf (φc(a)φ(x)) = ωf (φc(a))f(φc(a), φ(x)).

Arguing inductively, the latter is in Ω(Ac).

Thus, ( · )c is an endofunctor on Prob. The natural semigroup homomorphisms
X∗∗ → X∗ (concatenation) and X ⊆ X∗ de�ne morphisms in Prob, and, since
they also make ( · )∗ a monad in Set, we see that ( · )c is a monad in Prob.

Sequential Models Algebras for the compounding monad are easily charac-
terized.

De�nition: Let X be a monoid. A family of sets A ⊆ 2X is inductive i�, for
every E ∈ A and every function F : E → A, the set⋃

x∈E
xFx = {xy|x ∈ E, y ∈ Fx}

belongs to A.

A sequential probabilistic model is a model A such that X(A) is a monoid,
M(A) is inductive, and Ω(A) is closed under conditioning. This last means
that if ω ∈ Ω(A), x ∈ X(A) with ω(x) > 0, then y 7→ ω(xy)/ω(x)

Proposition 2: Sequential models are exactly the ( · )c algebras

Proof: Let A be a sequential model and let φ : X(A)∗ → X(A) be the canonical
mapping taking a string of elements of X(A) to their product. This will de�ne a
( · )c structure if it is a morphism. Since µ is the identity onX(A) (understood as
a subset of X(A)∗), µ carriesM(A) ⊆M(Ac) to itself. SinceM(A) is inductive
in P(X(A)), its preimage under µ is an inductive set containing M(A), and
thus, containsM(Ac). Thus, µ takesM(Ac) toM(A). Finally, if ω is a state
in Ω(A), then for any x ∈ X(A) with ω(x) > 0, de�ne βx(y) = ω(xy)/ω(x),
noting that this belongs to Ω(A). We now have

µ∗(ω)(x, a) = ω(xµ(a)) = ω(x)βx(µ(a)) = ω(x)µ∗(βx)(a).
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Arguing inductively, we now see that µ∗(β) belongs to Ω(Ac).

For the converse, suppose A is a (·)c algebra, with unit and multiplication
η : A → Ac and φ : Ac → A. Applying the functor X : Prob → Set, we
see that X(A) is a monoid with product x, y 7→ φ(xy) and identity element
φ(1Ac). Since η : A → Ac is an embedding and φ ◦ η = idA, we see that φ is
test preserving, by Lemma 1. If E ∈ M(A) and F : E →M(A), then we have⋃
x∈E{x}×Fx ∈M(Ac). The image of this test under φ is

⋃
x∈E xFx, soM(A)

is inductive. �

Remark: It is a perennial concern to try to de�ne some satisfactory �sequential
product" of e�ects, so that the product a ? b of two e�ects can be read as ��rst
a, and then b" [2, 12, 9, 14]. However, the standard candidate for quantum
e�ects, a ? b =

√
ab
√
a, is not associative, raising di�culties for the intended

interpretation [11]. The structure of Ac may help us better understand why
the idea of forming a ? product is inherently problematic. If a, b ∈ E(A) and
c ∈ E(Ac), then if a ∼ b, we have ca ∼ cb, but in general ac 6∼ bc. Thus, if A is
algebraic, we have a well-de�ned action of E(Ac) on Π(A), namely c[a] = [ca],
but not a well-de�ned product [a], [c] 7→ [ac]. Similar remarks apply to the e�ect
algebra [0, uA] associated with E(A): the monoid E(Ac) acts on the the e�ect
algebra, but this action generally does not �linearize" in the �rst variable to give
a sensible sequential product on the latter.

6 Closing under both # and (·)c.

Since both compounding and coarse-graining are operationally reasonable ways
of synthesizing new experiments from existing ones, one would like to be able
to close a given model under both constructions. We have two endo-functors
on Prob, given on objects by by F (A) = (A#)c and G(A) = (Ac)#. For any
model A, there is a natural morphism

`A : (A#)c → (Ac)#

given by
(a1 · · · an) 7→ a1 × · · · × an.

where the product on the right represents the setwise product in X∗ of the sets
ai ⊆ X∗. This gives us a natural transformation from F to G, and is in fact a
distributive law [1] between the monads # and (·)c. Equivalently, the coarse-
graining monad lifts to the category of (·)c-algebras, i.e., sequential models: if
(A, ν) is a sequential model, de�ne a sequential product on A# in the obvious
way, that is, for nonempty events a and b, set ab := {xy|x ∈ a, y ∈ b}. A
G-algebra, then, carries both a coherence σ and a sequential product x, y 7→ xy,
and these interact according to σ(xa) = xσ(a) and σ(a)x = σ(ax) for any
outcome x ∈ X(A) and any non-empty event a ∈ E(A).
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When A is algebraic, projective, and strongly unital, the logic L = Π(A) will
be a complete OMP, equipped with an associative binary operation distributing
over orthogonal joins. But even absent these constraints, G-algebras support a
notion of interference. As mentioned earlier, if a, b ∈ E(A) with a ∼ b, it needn't
be the case that ay ∼ by for a given outcome y ∈ X(A). In particular, if ω ∈
Ω(
−−→
AB), the probabilities ω(σ(a)y) and ω(ay) =

∑
x∈a ω(x, y) may di�er. This

is exactly what we see in quantum mechanical experiments. Borrowing language
from quantum theory, we may say that ω exhibits �interference" between the
outcomes x ∈ a [17].

7 Conclusion and Prospectus

As we've seen, the simple requirement that a probabilistic model be closed under
both coarse-graining and the formation of sequential experiments leads to rich
and interesting structures, namely G-algebras. Imposing the modest further
conditions of projectivity and strong unitality, one ends up essentially recovering
complete OMPs � the traditional models of quantum logics � equipped with
a kind of sequential product.

Looking ahead, The following questions seem especially important.

Question 1: If A is cohesive and projective, then A is algebraic, and hence, so
is G(A). What can be said about the detailed structure of G(A) and its logic,
Π(G(A))? The results of [4, 13] are likely to be relevant here.

Question 2: Which, if any, of the categories Prob#, Probc and ProbG of
algebras for #, (·)c, and G, admit a non-signaling monoidal structure such that,
for some algebras A and B, AB will have entangled states?

Question 3: If A is a von Neumann model, what is the structure of G(A)? Is
it embeddable in any von Neumann model?
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