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Information-theoretic insights have proven fruitful in many areas of quantum physics. But can the
fundamental dynamics of quantum systems be derived from purely information-theoretic principles,
without resorting to Hilbert space structures such as unitary evolution and self-adjoint observ-
ables? Here we provide a model where the dynamics originates from a condition of informational
non-equilibrium, the deviation of the system’s state from a reference state associated to a field of
identically prepared systems. Combining this idea with three basic information-theoretic principles,
we derive a notion of energy that captures the main features of energy in quantum theory: it is
observable, bounded from below, invariant under time-evolution, in one-to-one correspondence with
the generator of the dynamics, and quantitatively related to the speed of state changes. Our results
provide an information-theoretic reconstruction of the Mandelstam-Tamm bound on the speed of
quantum evolutions, establishing a bridge between dynamical and information-theoretic notions.

Introduction. Information-theoretic notions play an
important role in modern physics, from thermodynamics
to quantum field theory and gravity. With the advent
of quantum information and computation, new links be-
tween information-theoretic primitives and physical laws
have been uncovered, suggesting that information could
be the key to understand the counterintuitive laws of
quantum mechanics [1, 2]. Over the past two decades,
this research program resulted into a series of recon-
structions of the quantum framework from information-
theoretic principles [3–9].

A limitation of most quantum reconstructions, how-
ever, is that they do not provide direct insights into the
dynamics of quantum systems. Crucially, they do not
provide an information-theoretic characterization of the
notion of energy, with its dual role of observable quan-
tity and generator of the dynamics. This observable-
generator duality has been long known to be a fundamen-
tal feature, from which much of the algebraic structure
of quantum theory can be derived [10]. Recent works as-
sumed the duality as an axiom for the reconstruction of
quantum theory [9], or postulated it as a requirement for
constructing post-quantum dynamics [11–13]. And yet,
little is known about the origin of this duality. How is
“energy” emerging from “information,” and why does it
drive the evolution of quantum systems?

Here, we provide an information-theoretic character-
ization of quantum dynamics, deriving energy and the
observable-generator duality from basic principles about
the exchange of information in elementary physical sys-
tems. We use the framework of general probabilistic the-
ories (GPTs) to model the dynamics as a sequence of
elementary collisions through which a target system in-
teracts with a field of identically prepared systems, as
illustrated in Figure 1. The evolution takes place when
the system’s state deviates from the reference state of

FIG. 1. Dynamics as a sequence of elementary collisions. A
target system in an initial state ρ interacts with a field of
independent and identically prepared systems, each of them in
the reference state σ. Non-trivial dynamics takes place when
the state ρ deviates from the reference state σ, a condition
referred to as informational non-equilibrium.

the field, a condition that we name informational non-
equilibrium.

We then show that the evolution induced by collisions
converges to a reversible dynamics in the continuous-time
limit, and that the resulting dynamics is canonically as-
sociated to an observable, which we interpret as the en-
ergy observable. This canonical energy observable shares
most of the relevant features of energy in quantum me-
chanics: it is bounded from below, is a constant of mo-
tion, and is in one-to-one correspondence with the gen-
erator of the dynamics. Building on the notion of canon-
ical energy observable, we then provide an information-
theoretic derivation of the Mandelstam-Tamm bound on
the speed of quantum evolutions [14], thus establishing
a link between information-theoretic principles and dy-
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namical notions such as energy and speed.
Collision models in GPTs. Here we formulate a gen-

eral notion of collision model in the operational frame-
work of GPTs, where the states of physical systems are
not necessarily density matrices, but rather elements of
some general convex sets (see the Supplemental Mate-
rial [15] for details). Collision models have been widely
studied in the theory of quantum open systems [16–22],
with applications to non-equilibrium quantum thermo-
dynamics [23, 24] and quantum machine learning [25].
In a collision model, a target system evolves through a
sequence of quick pairwise interactions (collisions) with
a large number of independent and identically prepared
systems, as depicted in Fig. 1. Each interaction results
into a joint reversible dynamics of the target system (de-
noted by A) and one of the other systems (denoted by
A′). As a result of the interaction, the target system will
evolve according to the effective evolution

A Cτ ,σ A :=
A

Sτ
A

σ A′ A′
u

, (1)

where Sτ is the joint reversible dynamics of systems A
and A′ resulting from a collision of interaction time τ , σ is
the initial state of A′, hereafter called the reference state,
and u is the operation of discarding system A′, mathe-
matically represented by the functional that evaluates to
1 on every state of system A′ (see e.g. [26]).

The single-collision time τ is typically taken to be short
compared to the overall evolution time t, while the total
number of collisions N is taken to be large, with N ∝
t/τ . In the continuous limit, the evolution that system
A is given by the transformation Ut,σ := limτ→0

(
Cτ ,σ

) γt
τ ,

where γ > 0 is a suitable constant such that N = γt/τ .
We call the evolution Ut,σ the collisional dynamics gen-

erated by the reference state σ. Our first result is an
explicit expression for the collisional dynamics:

Theorem 1. For every reference state σ, one has Ut,σ =
eGσt, where Gσ is the linear map uniquely defined by the
relation Gσ(ρ) := (IA⊗uA′)dSτ

dτ

∣∣
τ=0

(ρ⊗σ) for every state
ρ, and IA is the identity map on the states of system A.

The proof is provided in the Supplemental Mate-
rial [15].

An important consequence of theorem 1 is that the
collisional dynamics Ut,σ is reversible for every σ and for
every t. Ideally, the evolution can be reversed by replac-
ing τ by −τ in Eq. (1), while keeping the state σ fixed.
This approach corresponds to an inversion of the joint
time evolution during each collision. Later in the paper,
we will also see that, under a few assumptions, the in-
verse can also be realized by replacing the state σ with
a new state σ̃ in Eq. (1), while keeping the interaction
time τ positive.

Informational equilibrium. So far, the formulation of
the collision model did not require any assumption, other
than the basic framework of general probabilistic theo-
ries. We now explore the idea that dynamics could be
linked to deviations of the system’s state from the state
of the surrounding environment. To this purpose, we take
the systems A′ in the collision model to be of the same
type of the target system A. When the states ρ and
σ coincide, we say that the system is at informational
equilibrium with its environment. Our key assumption,
hereafter denoted as IE, is that at informational equilib-
rium, the target and ancillary system do not undergo any
evolution, namely

Sτ (ρ⊗ ρ) = ρ⊗ ρ ∀τ ∈ R . (2)

In short: information equilibrium prevents evolution.
In the following we show that Eq. (2), combined with

three common assumptions in the GPT framework, gives
rise to a notion of energy that captures many of the fea-
tures of energy in quantum mechanics.

The first assumption is purity preservation (PP) [27],
namely the requirement that composing two pure trans-
formations in parallel or in sequence gives rise to another
pure transformation (informally, a pure transformation
is one that cannot be viewed as the coarse-graining of a
set of transformations; see Ref. [15] for the precise defi-
nition). This assumption happens to be satisfied by all
concrete examples of GPTs known to date, with the no-
table exception of Ref. [28].

The second assumption is strong symmetry (SS) [9],
the condition that every two sets of perfectly distinguish-
able states can be reversibly converted into one another
if they have the same cardinality. Strong symmetry has
a clear information-theoretic interpretation, as it guar-
antees that two sets that can perfectly encode the same
amount of information are equivalent. Here, we assume
that strong symmetry holds for the collisional dynamics.

Finally, the third assumption is classical decompos-
ability [9], also called diagonalization (D) [29], namely
the requirement that every state can be prepared as a
random mixture of perfectly distinguishable pure states.
Diagonalization and strong symmetry appear either as
axioms or as key results in information-theoretic deriva-
tions of quantum theory [3–7, 9] and often play a role in
the study of information processing in other examples of
GPTs [27, 30–33].

Information-theoretic characterization of energy.
Theorem 1 sets up a correspondence between states and
generators of the dynamics via the fast collision model.

Theorem 2. For any collision model, IE, SS, and D
imply that the correspondence σ 7→ Gσ between states
and generators is injective: if two states generate the
same collisional dynamics, then they are the same state.

The proof is provided in Supplemental Material [15],
where we show that the theorem still holds if SS is re-
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placed by the weaker assumption that every two pure
states are connected by a reversible transformation gen-
erated by the collision model.

Theorem 2 establishes a one-to-one correspondence be-
tween states and generators of the collisional dynamics.
Now, earlier work by Barnum, Müller, and Ududec [9]
showed that SS and D imply a one-to-one correspondence
between states and effects, that is, probability functionals
associated to measurement outcomes (see the next para-
graph for more details). Thanks to this fact, the state-
generator correspondence of Theorem 2 can be turned
into an effect-generator correspondence.

Effects are associated to the outcomes of possible mea-
surements, and constitute the primary observable quanti-
ties in a physical theory. Mathematically, an N -outcome
measurement on system A is described by a collection of
functionals (ei)

N
i=1, mapping states ρ of system A into

probabilities ei(ρ) ∈ [0, 1] and satisfying the normaliza-
tion condition

∑N
i=1 ei(ρ) = 1 for every possible state

ρ (see e.g. [26]). Operationally, ei(ρ) is the probabil-
ity that the measurement produces outcome i when per-
formed on a system in the state ρ. An effect in a GPT
is a functional appearing in one of the possible measure-
ments allowed by the theory. In the following, we will
denote by St(A) and Eff(A) the sets of states and effects
for system A, respectively.

SS and D imply that every every pure state ψ ∈ St(A)
is uniquely associated to a pure effect eψ ∈ Eff(A) satis-
fying the condition eψ(ψ) = 1 [9]. Mathematically, the
map ψ 7→ eψ is a one-to-one correspondence between
the set of pure states and the set of pure normalized ef-
fects, that is, pure effects e such that e(ρ) = 1 for some
state ρ. This correspondence can be extended by lin-
earity to mixed states, and, more generally to arbitrary
linear combinations of pure states, giving rise a property
known as (strong) self-duality [34, 35].

We now use self-duality to define a canonical energy
observable. An observable on system A can be defined
as an element X of the real vector space spanned by
the effects Eff(A) [27]. For a linear combination of ef-
fects {ej} with coefficients {xj}, the expectation value of
the observable X =

∑
j xj ej on the state ρ is given by

〈X〉ρ := X(ρ) =
∑
j xj ej(ρ), and can be estimated by

performing suitable measurements containing the effects
{ej} and by post-processing the outcomes.

A notion of energy observable should capture two key
aspects of the dynamics: (1) the trajectories for all pos-
sible initial states, and (2) the rate at which such tra-
jectories are travelled. Referring to the basic scheme of
the collision model [Eq. (1)], the state space trajectories
are uniquely determined by the reference state σ, and
therefore, by the effect eσ corresponding to σ through
self-duality. As a quantifier of the rate, here we take the
maximum singular value of the generator Gσ =

dUt,σ

dt

∣∣
t=0

,
which corresponds to the maximum rate for the change
of vectors under the linear map Ut,σ = eGσt (see Supple-

mental Material [15] for details). These considerations
lead to the following definition:

Definition 1. In a GPT satisfying IE and self-duality,
the canonical energy observable associated to the gener-
ator Gσ is the functional H = λmax(Gσ) eσ, where eσ is
the effect associated to the state σ, and λmax(Gσ) is the
maximum singular value of the generator Gσ.

Note that the canonical energy observable is automat-
ically bounded from below, since one has 〈H〉ρ ≥ 0 for
every state ρ.

In a theory satisfying SS and D, the energy observable
H can be measured in a canonical way, by performing an
ideal measurement described by pure effects. Explicitly,
the canonical measurement can be obtained by diagonal-
izing the state σ as σ =

∑d
i=1 pi ψi, where {pi}di=1 are

probabilities and {ψi}di=1 is a maximal set of perfectly
distinguishable pure states. Combining this decomposi-
tion with self-duality, the energy observable can be writ-
ten as

H =

d∑
i=1

Ei eψi Ei := λmax(Gσ) pi . (3)

Here, the pure effects {eψi
} form a measurement [15],

which we interpret as the ideal energy measurement, with
outcomes {1, . . . , d} associated to the possible energy val-
ues {E1, . . . ,Ed}, respectively. Eq. (3) gives a canonical
way to estimate the expectation value of the energy for
every possible input state.

Crucially, the canonical energy observable is invariant
under time evolution. The invariance of H follows from
the invariance of the state σ, which in turn is a direct
consequence of informational equilibrium: if a system in
the state σ collides with another system in the state σ,
then no state change occurs to them due to Eq. (2). By
strong self-duality, the invariance of σ implies the invari-
ance of eσ, and therefore of H. Physically, this condition
amounts to the conservation of the energy: for every state
ρ, the expectation value 〈H〉ρt is constant along the tra-
jectory ρt := Ut,σ (ρ), t ∈ R. In the Supplemental Ma-
terial [15], we show that, for theories satisfying IE, SS,
D, and PP, not only the expectation value, but also the
whole probability distribution of the ideal energy mea-
surement is invariant under time evolution.

Speed bound. Using the canonical energy observable,
we now derive a fundamental speed limit, which in
quantum theory coincides with the Mandelstam-Tamm
bound [14]. Our limit provides a lower bound, expressed
in terms of the variance of the energy observable, on the
time taken by a system to transition from a given initial
state to a given final state.

We start by providing a notion of speed in general
probabilistic theories:
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Definition 2 (Speed of state change). Let Dt be a dy-
namics, let {ρt = Dtρ | t ∈ R} be the trajectory of an
initial state ρ, and let t0 and t1 ≥ t0 be two moments
of time. The average speed from time t0 to time t1 is
defined as

vρ(t0, t1) :=
‖ρt1 − ρt0‖
t1 − t0

, (4)

where ‖ · ‖ an arbitrary norm on the real vector space
generated by the states of A. Similarly, the instantaneous
speed at time t is defined as vρ(t) = limδt→0 vρ(t, t+ δt).

In the following we will take the norm ‖ · ‖ to be
the the Euclidean norm induced by self-duality, namely
‖
∑
j cj ρj‖ :=

√∑
j,k cj , ckeρj (ρk) for every linear com-

bination of states (ρj) with real coefficients (cj). With
this choice of norm, the instantaneous speed is constant
along the trajectory for every reversible dynamics with
time-independent generator Ut = eGt. Using this fact, in
the Supplemental Material [15] we prove the inequality

vρ(t0, t1) ≤ vρ(t) = ‖Gρ‖ ∀t0, t1, t ∈ R , (5)

which we use to derive a bound on the time taken by the
system to transition between two given states:

Theorem 3 (Speed bound). In a GPT satisfying IE,
PP, SS, and D, the time ∆t taken by a system to transi-
tion from an initial state ρ0 to a final state ρ1 through a
collisional dynamics is lower bounded as

∆t ≥ D(ρ0, ρ1)

∆H
, (6)

where D(ρ0, ρ1) := ‖ρ1 − ρ0‖/
√
2 is the normalized Eu-

clidean distance between the states ρ0 and ρ1, while
∆H :=

√
〈H2〉ρ0 − 〈H〉2ρ0 is the standard deviation of

the canonical energy observable H, and H2 is the observ-
able defined as H2 :=

∑
i E

2
i eψi .

The speed limit (6) provides a general lower bound
that applies to all possible collisional dynamics and to all
possible pairs of states. For two perfectly distinguishable
pure states, the bound becomes ∆t ≥ 1/∆E, which in the
case of quantum theory coincides with the Mandelstam-
Tam bound up to a dimensional factor h/4, where h is
Planck’s constant [14]. Hence, Eq. (6) can be regarded
as an alternative, purely information-theoretic derivation
of the Mandelstam-Tamm bound.

The speed of the inverse evolution. Mathematically,
inverting a dynamics amounts to changing its generator
G into −G. In terms of the collision model, this would
amount to changing the reference state σ into −σ, which
however is not a state. Hence, a natural question is: how
to achieve the inverse evolution in the collision model?
We now show that there exists a valid state σ̃, called the
inverting state, such that Gσ̃ is proportional to G−σ. For

a reference state of the form σ =
∑d
i=1 pi ψi, {ψi} being

a maximal set of perfectly distinguishable pure states,
the inverting state is σ̃ =

∑
i (pmax − pi)ψi/(d pmax − 1)

with pmax := max{pi}di=1. In the Supplemental Material,
we show that the generator associated to this state is
Gσ̃ = −Gσ/(d pmax− 1). In words, Gσ̃ is proportional to
−Gσ, the generator of the inverse evolution. Crucially,
a consequence of the proportionality factor is that the
time required to achieve the direct evolution Ut = eGσt is
generally different from the time required to achieve its
inverse U−1

t = e−Gσt. The two times are related through
the equation

tinverse = (d pmax − 1) tdirect . (7)

For example, consider the case where the direct dynam-
ics is generated by a pure state ψ, corresponding to
pmax = 1. In this case, the time required by the inverse
evolution is d − 1 times the time required for the in-
verse evolution. For physical systems consisting of a large
number of components, d grows exponentially and there-
fore the inverse evolution requires an exponentially larger
time. It is intriguing to speculate that, if the collision
model were taken to be fundamental (meaning that the
natural dynamics of physical systems does indeed arise
from interactions with a background field of identically
prepared particles), the above argument could provide
an explanation for why certain evolutions are physically
hard to invert.

Conclusions. In this work we have defined a canonical
notion of energy observable from information-theoretic
principles and derived its duality with the generators of
dynamics in collision models. Our results provide a prin-
cipled approach to the understanding of energy in quan-
tum theory, by placing it into the broader context of gen-
eral probabilistic theories. An important byproduct of
our analysis is a derivation of a speed limit on the amount
of time needed to transition between two states through
a collisional dynamics. In the case of quantum theory,
our bound reduces to the well-known Mandelstam-Tamm
bound, sometimes referred to as form of “energy-time un-
certainty relation” [36]. More generally, our bound can
be used to derive generalized uncertainty relations for
arbitrary one-parameter groups of reversible transforma-
tions, without necessarily regarding the group parameter
as “time.” These results contribute with new insights to
a recently line of investigation on various types of uncer-
tainty relations in general probabilistic theories [37–40].

Acknowledgments. GC and LG wish to thank
Tamal Guha for helpful comments during an early pre-
sentation of this work. This work was supported by the
Hong Kong Research Grant Council through the Senior
Research Fellowship Scheme SRFS2021-7S02 and the Re-
search Impact Fund R7035-21F, and by the John Temple-
ton Foundation through the ID# 62312 grant, as part of
the ‘The Quantum Information Structure of Spacetime’



5

Project (QISS). The opinions expressed in this publica-
tion are those of the authors and do not necessarily reflect
the views of the John Templeton Foundation. Research
at the Perimeter Institute is supported by the Govern-
ment of Canada through the Department of Innovation,
Science and Economic Development Canada and by the
Province of Ontario through the Ministry of Research,
Innovation and Science.

∗ giannell@connect.hku.hk
† giulio@cs.hku.hk

[1] C. A. Fuchs, Quantum mechanics as quantum infor-
mation (and only a little more) (2002), arXiv:quant-
ph/0205039 [quant-ph].

[2] G. Brassard, Nature Physics 1, 2 (2005).
[3] L. Hardy, Quantum theory from five reasonable axioms

(2001).
[4] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Physical

Review A 81, 10.1103/physreva.81.062348 (2010).
[5] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Physical

Review A 84, 10.1103/physreva.84.012311 (2011).
[6] B. Dakić and Č. Brukner, in Deep Beauty: Understanding

the Quantum World Through Mathematical Innovation,
edited by H. Halvorson (Cambridge University Press,
2011) pp. 365–392.

[7] L. Masanes and M. P. Müller, New journal of physics 13,
063001 (2011).

[8] L. Hardy, Reformulating and reconstructing quantum
theory (2011), 1104.2066.

[9] H. Barnum, M. P. Müller, and C. Ududec, New Journal
of Physics 16, 123029 (2014).

[10] E. Grgin and A. Petersen, Journal of Mathematical
Physics 15, 764 (1974).

[11] D. Branford, O. C. O. Dahlsten, and A. J. P. Garner,
Foundations of physics 48, 982 (2018).

[12] M. Plávala and M. Kleinmann, Phys. Rev. Lett. 128,
040405 (2022).

[13] L. Jiang, D. R. Terno, and O. Dahlsten, Phys. Rev. Lett.
132, 120201 (2024).

[14] L. Mandelstam and I. Tamm, J. Phys. 9 (1945).
[15] See supplemental material at, URL_will_be_inserted_

by_publisher, for the presentation of the GPT frame-
work, the proof of Theorem 1, the proof of Theorem
2, the characterization of the maximum singular value
of the generator of the dynamics, the proof that the
pure effects dual to perfectly distinguishable pure states
compose a measurement, the the proof of energy in-
variance under time evolution, the proof of Theorem 3,
and the proof of the inverse evolution for quantum and
generalized collision models. Supplemental Material cites
Refs. [3, 4, 8, 9, 16–22, 25–27, 29, 30, 42–54].

[16] J. Rau, Phys. Rev. 129, 1880 (1963).
[17] M. Ziman, P. Štelmachovič, V. Bužek, M. Hillery,

V. Scarani, and N. Gisin, Phys. Rev. A 65, 042105 (2002).
[18] V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and

V. Bužek, Phys. Rev. Lett. 88, 097905 (2002).
[19] T. Rybár, S. N. Filippov, M. Ziman, and V. Bužek, Jour-

nal of Physics B: Atomic, Molecular and Optical Physics
45, 154006 (2012).

[20] F. Ciccarello, G. M. Palma, and V. Giovannetti, Phys.
Rev. A 87, 040103 (2013).

[21] M. Cattaneo, G. De Chiara, S. Maniscalco, R. Zambrini,
and G. L. Giorgi, Phys. Rev. Lett. 126, 130403 (2021).

[22] F. Ciccarello, S. Lorenzo, V. Giovannetti, and G. M.
Palma, Physics Reports 954, 1 (2022).

[23] M. Scully, M. Zubairy, G. Agarwal, and H. Walther, Sci-
ence (New York, N.Y.) 299, 862 (2003).

[24] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Phys. Rev. X 7, 021003 (2017).

[25] S. Lloyd, M. Mohseni, and P. Rebentrost, Nature physics
10, 631 (2014).

[26] H. Barnum and A. Wilce, Electronic Notes in Theoretical
Computer Science 270, 3 (2011).

[27] G. Chiribella and C. M. Scandolo, Entanglement as an
axiomatic foundation for statistical mechanics (2016),
arXiv:1608.04459 [quant-ph].

[28] G. M. D’Ariano, M. Erba, and P. Perinotti, Physical Re-
view A 102, 10.1103/physreva.102.052216 (2020).

[29] G. Chiribella and C. M. Scandolo, Electronic Proceedings
in Theoretical Computer Science 195, 96 (2015).

[30] J. Barrett, Phys. Rev. A 75, 032304 (2007).
[31] P. Janotta, C. Gogolin, J. Barrett, and N. Brunner, New

Journal of Physics 13, 063024 (2011).
[32] G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini,

International Journal of Modern Physics A 29, 1430025
(2014).

[33] G. Chiribella, L. Giannelli, and C. M. Scandolo, Bell
nonlocality in classical systems (2024), arXiv:2301.10885
[quant-ph].

[34] M. Koecher, Mathematische Annalen 135, 192 (1958).
[35] E. B. Vinberg, Dokl. Acad. Nauk. SSSR , 270 (1960),

english trans. Soviet Math. Dokl. 2, 1416-1619 (1961).
[36] W. Heisenberg, Zeitschrift für Physik 43,

10.1007/BF01397280 (1927).
[37] L. Catani and D. E. Browne, New Journal of Physics 19,

073035 (2017).
[38] D. Saha, M. Oszmaniec, L. Czekaj, M. Horodecki, and

R. Horodecki, Phys. Rev. A 101, 052104 (2020).
[39] R. Takakura and T. Miyadera, Journal of Mathematical

Physics 61, 082203 (2020).
[40] L. Catani, M. Leifer, G. Scala, D. Schmid, and R. W.

Spekkens, Physical Review Letters 129, 10.1103/phys-
revlett.129.240401 (2022).

[41] H. Halvorson, ed., Deep Beauty: Understanding the
Quantum World Through Mathematical Innovation
(Cambridge University Press, 2010).

[42] H. Barnum, J. Barrett, M. Leifer, and A. Wilce, Phys.
Rev. Lett. 99, 240501 (2007).

[43] L. Hardy, in Deep Beauty: Understanding the Quan-
tum World through Mathematical Innovation, edited by
H. Halvorson (Cambridge University Press, 2011) pp.
409–442.

[44] L. Hardy, Mathematical Structures in Computer Science
23, 399–440 (2013).

[45] L. Hardy, in Quantum Theory: Informational Foun-
dations and Foils, edited by G. Chiribella and R. W.
Spekkens (Springer Netherlands, 2016) pp. 223–248.

[46] M. Müller, SciPost Physics Lecture Notes 10.21468/sci-
postphyslectnotes.28 (2021).

[47] H. Araki, Communications in Mathematical Physics 75,
1 (1980).

[48] W. K. Wootters, in Complexity, entropy and the physics
of information, edited by W. H. Zurek (CRC press, 1990)

mailto:giannell@connect.hku.hk
mailto:giulio@cs.hku.hk
https://arxiv.org/abs/quant-ph/0205039
https://arxiv.org/abs/quant-ph/0205039
https://doi.org/10.1038/nphys134
https://doi.org/10.48550/ARXIV.QUANT-PH/0101012
https://doi.org/10.1103/physreva.81.062348
https://doi.org/10.1103/physreva.84.012311
https://doi.org/10.1017/CBO9780511976971.011
https://doi.org/10.1017/CBO9780511976971.011
https://doi.org/10.1088/1367-2630/13/6/063001
https://doi.org/10.1088/1367-2630/13/6/063001
https://arxiv.org/abs/1104.2066
https://doi.org/10.1088/1367-2630/16/12/123029
https://doi.org/10.1088/1367-2630/16/12/123029
https://doi.org/https://doi.org/10.1007/s10701-018-0205-9
https://doi.org/10.1103/PhysRevLett.128.040405
https://doi.org/10.1103/PhysRevLett.128.040405
https://doi.org/10.1103/PhysRevLett.132.120201
https://doi.org/10.1103/PhysRevLett.132.120201
URL_will_be_inserted_by_publisher
URL_will_be_inserted_by_publisher
https://doi.org/10.1103/PhysRev.129.1880
https://doi.org/10.1103/PhysRevA.65.042105
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1088/0953-4075/45/15/154006
https://doi.org/10.1088/0953-4075/45/15/154006
https://doi.org/10.1088/0953-4075/45/15/154006
https://doi.org/10.1103/PhysRevA.87.040103
https://doi.org/10.1103/PhysRevA.87.040103
https://doi.org/10.1103/PhysRevLett.126.130403
https://doi.org/https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
https://doi.org/10.1103/PhysRevX.7.021003
https://doi.org/https://doi.org/10.1038/nphys3029
https://doi.org/https://doi.org/10.1038/nphys3029
https://doi.org/https://doi.org/10.1016/j.entcs.2011.01.002
https://doi.org/https://doi.org/10.1016/j.entcs.2011.01.002
https://arxiv.org/abs/1608.04459
https://doi.org/10.1103/physreva.102.052216
https://doi.org/10.4204/eptcs.195.8
https://doi.org/10.4204/eptcs.195.8
https://doi.org/10.1103/PhysRevA.75.032304
https://doi.org/10.1088/1367-2630/13/6/063024
https://doi.org/10.1088/1367-2630/13/6/063024
https://doi.org/10.1142/s0217751x14300257
https://doi.org/10.1142/s0217751x14300257
https://arxiv.org/abs/2301.10885
https://arxiv.org/abs/2301.10885
http://eudml.org/doc/160611
https://doi.org/10.1007/BF01397280
https://doi.org/10.1088/1367-2630/aa781c
https://doi.org/10.1088/1367-2630/aa781c
https://doi.org/10.1103/PhysRevA.101.052104
https://doi.org/10.1063/5.0017854
https://doi.org/10.1063/5.0017854
https://doi.org/10.1103/physrevlett.129.240401
https://doi.org/10.1103/physrevlett.129.240401
https://doi.org/10.1017/CBO9780511976971
https://doi.org/10.1017/CBO9780511976971
https://doi.org/10.1103/PhysRevLett.99.240501
https://doi.org/10.1103/PhysRevLett.99.240501
https://doi.org/10.1017/CBO9780511976971.013
https://doi.org/10.1017/CBO9780511976971.013
https://doi.org/10.1017/S0960129512000163
https://doi.org/10.1017/S0960129512000163
https://doi.org/10.1007/978-94-017-7303-4_7
https://doi.org/10.1007/978-94-017-7303-4_7
https://doi.org/10.21468/scipostphyslectnotes.28
https://doi.org/10.21468/scipostphyslectnotes.28
https://doi.org/https://doi.org/10.1007/BF01962588
https://doi.org/https://doi.org/10.1007/BF01962588
https://doi.org/https://doi.org/10.1201/9780429502880
https://doi.org/https://doi.org/10.1201/9780429502880


6

pp. 39–46.
[49] G. M. D’Ariano, Philosophy of quantum information and

entanglement 85, 11 (2010).
[50] A. Baker, Matrix groups: An introduction to Lie group

theory (Springer Science & Business Media, 2003).
[51] B. C. Hall, Quantum theory for mathematicians

(Springer, 2013).

[52] B. Hall, Lie Groups, Lie Algebras, and Representations,
Graduate texts in mathematics, Vol. 222 (Springer Na-
ture, Cham, 2015).

[53] M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett. 79, 321
(1997).

[54] T. Guha, S. Roy, and L. Giannelli, Untitled manuscript,
unpublished (2023).

https://doi.org/https://doi.org/10.1017/CBO9780511676550
https://doi.org/https://doi.org/10.1017/CBO9780511676550
https://doi.org/10.1103/PhysRevLett.79.321
https://doi.org/10.1103/PhysRevLett.79.321

	Information-theoretic derivation of energy and speed bounds
	Abstract
	Acknowledgments
	References


