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Kochen-Specker contextuality is a fundamental feature of quantum mechanics and a crucial resource for
quantum computational advantage and reduction of communication complexity. Its presence is witnessed
in empirical data by the violation of noncontextuality inequalities. However, all known noncontextuality
inequalities corresponding to facets of noncontextual polytopes are either Bell inequalities or refer to cyclic or
state-independent KS contextuality scenarios. We introduce a general method for lifting noncontextuality
inequalities, deriving facets of noncontextual polytopes for more complex scenarios from known facets of
simpler sub-scenarios. Concretely, starting from an arbitrary scenario, the addition of a new measurement
or a new outcome preserves the facet-defining nature of any noncontextuality inequality. This extends
the results of Pironio [J. Math. Phys. 46, 062112 (2005)] from Bell nonlocality scenarios to contextuality
scenarios and unifies liftings of Bell and noncontextuality inequalities. We show that our method produces
facet-defining noncontextuality inequalities in all scenarios with contextual correlations, and we present
examples of facet-defining noncontextuality inequalities for scenarios where no examples were known. Our
results shed light on the structure of noncontextuality polytopes and the relationship between such polytopes
across different scenarios.

Motivation

Kochen–Specker (KS) contextuality [15, 7], i.e. the impossibility of explaining with a single global probability
distribution the marginal probability distributions produced by either ideal measurements of compatible observ-
ables [14, 8] or by measurements on spatially separated systems [4, 9], is a characteristic signature of quantum
mechanics, and a crucial informational or computational resource [13, 19, 6, 11, 12, 23]. Contextuality is typically
witnessed by the violation of linear constraints called noncontextuality (NC) inequalities. However, all known
facet-defining NC inequalities, which provide a minimal set of conditions for deciding whether measurement
statistics are contextual, are either for Bell scenarios [9] or refer to cyclic [14] or state-independent [8, 3, 22]
contextuality scenarios.

The set of noncontextual correlations for a given measurement scenario forms a convex polytope. Character-
ising all its facet-defining inequalities is a notoriously hard problem (NP-complete [2]) to solve in general. As
such, there are few fully characterised scenarios, for which all facet-defining NC inequalities are known: non-Bell
scenarios include two-outcome k-cycle (k ≥ 5) scenarios [1], Bell scenarios include the (2, 2, 2) CHSH scenario
[9], and various classes generalising it such as (2,m, 2) [16, 5], (n, 2, 2) [20], and (2, 2, k) [10] scenarios, where
(n,m, k) stands for n parties, each with m measurement settings, each with k possible outcomes. Furthermore,
there are many Bell scenarios for which a partial characterisation of their Bell inequalities has been carried out.

Despite the demoralising hardness of characterising arbitrary scenarios, some non-trivial work has been done
linking simpler Bell scenarios with more complex ones. In Ref. [17], Pironio proposed a method to derive (some
of the) facet-defining Bell inequalities of complex Bell polytopes starting from known inequalities of simpler Bell
polytopes. It employed the idea of lifting, a commonly used technique in convex polyhedral theory to derive
facet-defining inequalities of a polytope in Rn from facet-defining inequalities of a related polytope in Rm where
m < n. The upshot is that once the facets of a simpler polytope have been fully or partially identified, one
need not start from scratch when searching for the facets of certain more complex polytopes. One may instead
concentrate efforts on finding the facet-defining inequalities that are absent in or do not arise from simpler cases.

Aiming to foster facet characterisation for general Bell scenarios, Pironio showed that any facet-defining
inequality of an arbitrary Bell polytope can be lifted to one or more facet-defining inequalities of any more complex
Bell polytope, where by ‘more complex’ we mean a Bell scenario with more parties, more local measurements
for a party, or more outcomes for a measurement (or a combination of all three) than in the original scenario.
Building on this work, in Ref. [18] Pironio characterised Bell scenarios whose only facets are given by liftings
of the CHSH inequality. These include e.g. the bipartite scenarios where one party has a binary choice of
dichotomic measurements, irrespective of the number of measurement settings and outcomes for the other party.

Non-Bell-type contextuality scenarios, on the other hand, have not received as much attention in terms of
facet characterisation. Our work aims to address this gap.

Contributions

We introduce a method for producing facet-defining NC inequalities in arbitrary KS contextuality scenarios. This
is based on – and strictly extends – the lifting techniques used by Pironio [17] for Bell scenarios. The method
allows us to identify facet-defining NC inequalities for any scenario which admits contextual correlations and thus
provides a key to explore an infinity of as-of-yet unexplored scenarios. This is ensured by Vorob'ev’s theorem
[21], which guarantees that any contextuality-witnessing scenario contains an induced k-cycle sub-scenario (for
some k ≥ 4), and by the complete characterisation of the noncontextual polytopes for all such cycle scenarios [1].

We first give a concise, high-level summary of our main results; please refer to the full paper for definitions
and details. A scenario S can be extended to a more complex scenario T by adding more measurements and/or
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Figure 1: Measurement lifting in simple scenarios with dichotomic measurements: (a) Case I from the scenario
with two incompatible measurements to the scenario with three pairwise incompatible measurements; (b) Case
II from the scenario with a single measurement to the scenario with two compatible measurements.

more outcomes. We focus on one such step at a time: either adding one measurement or adding one outcome for
an already existing measurement. An arbitrary extension can be seen as a sequence of such single-step extensions.
We fix an initial facet-defining NC inequality for S which we aim to lift to (one or more) facet-defining NC
inequalities for T. We achieve this in both situations, but the specifics differ somewhat.

Measurement lifting. When T is obtained from S by adjoining a new measurement A, the method of
lifting depends both on the compatibility relations between A and the pre-existing measurements and on the
facet-defining inequality being lifted, namely on the set of measurements that effectively contribute (see Sec. IVC2
in paper for a precise definition) to that inequality. We distinguish two cases:

I. If A is incompatible with some measurement that contributes to the initial inequality, then the inequality lifts
unchanged to a facet-defining inequality for the scenario T. The new measurement A is traced out and does
not effectively contribute to the lifted inequality, thus it need not be performed for testing the inequality.

II. If A is compatible with all the measurements that contribute to the initial inequality, then the inequality
lifts to a facet-defining inequality of T for each outcome ak of A. Each such lifted inequality can be tested
by first measuring A, post-selecting on obtaining the outcome ak, and then testing the initial inequality.

Outcome lifting. When T is obtained from S by adding a new outcome a0 for an already existing measurement
A, the original inequality lifts to a facet-defining inequality on T for each choice of outcome ak ̸= a0 of A. The
choice indicates the outcome ak of A with which a0 is being ‘clubbed together’. When testing the inequality, any
occurrence of the new outcome a0 for A is treated as if it were an ak in the original scenario. An exception
is that the initial inequality cannot itself be the result of case II measurement lifting with the same choice of
outcome ak, as intuitively this would entail post-selecting on two different outcomes for A.

Overview of key ideas

We offer an accessible, intuitive sketch of the main ingredients of our lifting method using small – trivial yet
visualisable – examples to convey the flavour of the various forms of lifting. The noncontextual polytope for the
simplest contextuality-witnessing scenario is 8-dimensional. It is thus impossible to visualise lifting starting from
this polytope. Nonetheless, there are simple visualisable NC polytopes – albeit for scenarios unable to witness
contextuality – which aptly capture the idea of lifting. We use these examples to provide an intuition for the
idea behind our lifting method. Despite being thoroughly uninteresting from the point of view of contextuality,
these examples are indeed special cases of our lifting results which ‘contain all the germs of generality’.

Case I Measurement lifting This applies when the new measurement added to S is not simultaneously
compatible with all the measurements contributing to the facet-defining inequality being lifted, i.e. it is
incompatible with at least one such measurement. We illustrate this case with an example that serves as a
proxy for all such situations. Consider S the scenario with two dichotomic measurements, A and B, that are
incompatible with each other. Its NC polytope S is two-dimensional (embedded in a four-dimensional ambient
vector space) and is shown on the left-hand side of Fig. 1(a). Its four vertices correspond to the deterministic
assignments – 00, 01, 10, 11 – to measurements A and B, in that order. Observe that the fact that A and B are
incompatible induces an affine dependency among the vertices of the polytope,

v00 − v01 − v10 + v11 = 0, (1)

which would not hold were A and B compatible; cf. the simplex on the right-hand side of Fig. 1(b). This kind
of affine relation induced by measurement incompatibility is the cornerstone of our proofs; see e.g. Eq. (17) in
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the full paper. Since S is a two-dimensional polytope, its facets are one-dimensional. One of its facet-defining
inequalities is depicted in the figure; it supports the facet containing the vertices v10 and v11.

Now consider extending S to T by introducing a new measurement C incompatible with both A and B. The
NC polytope T is three-dimensional (embedded in a six-dimensional ambient vector space), and is shown on
the right-hand side of Fig. 1(a). Notice that each outcome of C determines an extension of each deterministic
assignment in S (hence, vertex of S) to a deterministic assignment in T (vertex of T ); e.g. v010 and v011 in T
are the two extensions of v01 in S. One can think of this as captured by a polytope projection from T to S
which ‘forgets’ the outcome of C. The polytope T has a facet with vertices v100, v101, v110, and v111, whose
supporting inequality is depicted on the right of Fig. 1(a). These four vertices of T are precisely the extensions
of the vertices v01 and v11 of S, which saturate the initial inequality depicted on the left. The inequality shown
on the right of Fig. 1(a) is thus the lifting of the inequality on the left. One can similarly obtain three other
facet-defining inequalities of T from the remaining three facets of S.

In general, case I measurement lifting maps a facet F of S to the facet of T whose set of vertices is exactly
the set of all extensions of vertices in the original facet F . The explicit form of the lifted inequality turns out to
be, in a sense, the same as that of the initial inequality, since the outcome of the new measurement is ignored
and thus ‘traced out’; see Sec. IVC in the full paper.

Case II Measurement lifting This applies when the newly added measurement is compatible with all the
pre-existing measurements that effectively contribute to the facet-defining inequality being lifted. To visualise
lifting in this case, take S to be the scenario with a single dichotomic measurement, say A. Its NC polytope S is
a one-dimensional line segment (embedded in a two-dimensional ambient vector space), shown on the left-hand
side of Fig. 1(b). It has only two facet-defining inequalities. One of them, saturated only by the vertex v0, is
depicted in the figure.

We extend this scenario to T by adding a dichotomic measurement B compatible with A. The resulting NC
polytope T is a three-dimensional tetrahedron (embedded in a four-dimensional ambient vector space), shown on
the right-hand side of Fig. 1(b). The facet-defining inequality depicted in the figure is one of two possible liftings
of the initial inequality on the left. It is saturated by the vertices v00, v01, and v11. The first two are all the
extensions of v0, the vertex that saturates the initial inequality, while the third is just one of the two possible
extensions of v1, the other, non-saturating vertex of S. The vertex of T corresponding to the other extension,
v10, does not saturate the inequality shown on the right of Fig. 1(b). However, a different lifting of the same
initial inequality shown on the left of Fig. 1(b) would support the facet containing the vertices v00, v01, and v10.

In general, case II measurement lifting maps a facet F of S to a facet of T whose set of vertices consists
of: (i) every possible extension of the vertices in the original facet F , and (ii) every possible extension of the
remaining vertices of S (not in the original facet F ) except those that assign a chosen fixed outcome to the new
measurement (outcome 0 for B in the example depicted above). Varying the choice of this fixed outcome for the
new measurement yields different liftings to T of the same facet-defining inequality of S.

Outcome lifting In the case of outcome lifting, we consider extending a scenario S to T by adding an
extra outcome a0 to an existing measurement A. Here, unlike in the case of measurement lifting, there is no
(immediate) concept of extension of assignments, and thus of vertices of S to vertices of T . In fact, the vertices
of S could be seen as a strict subset of those of polytope T . These vertices behave the same way with respect
to an outcome-lifted inequality in T as they do with respect to the initial facet-defining inequality of S, either
saturating both or falling short by the same amount. However, there are more vertices in the larger polytope T ,
namely those that assign the new outcome a0 to the measurement A. Each such vertex behaves exactly as the
vertex obtained by substituting ak for the outcome of A (while leaving the rest of the assignment intact), for
some fixed choice outcome ak of A already present in the initial scenario S. In other words, a facet F of S is
lifted to a facet of T whose set of vertices consists of: the vertices in F plus the vertices obtained from a vertex
in F by replacing (the fixed) outcome ak by a0 for the measurement A.

As for case II measurement lifting, there is an element of choice involved. Indeed, for each choice of k, one
obtains a (possibly different) facet-defining inequality of T . There is one exception, though: choosing k fails to
yield a facet of T when the initial facet of S is itself obtainable from a sub-scenario of S via case II measurement
lifting by fixing the choice of outcome ak when adding measurement A; in other words, when the facet-defining
inequality being lifted is such that A is compatible with all the measurements effectively contributing to it and
all its non-saturating vertices assign outcome ak to A.

One may think of each such choice of k as determining a polytope projection T → S which performs a
coarse-graining of the outcomes of A by clubbing together a0 and ak as the same outcome (see also the discussion
in Sec. VI of the full paper). The lifted inequality then corresponds to ‘tracing out’ along this identification,
much as in case I measurement lifting. This means that the form of the lifted inequality is such that it does
not distinguish between the vertices with ak and a0 as outcomes of A, while the remaining vertices behave as
they did with respect to the original inequality. Indeed, in the new scenario, the lifted inequality is still in
effect testing the original inequality: the new outcome needs to be ‘clubbed together’ with – and thus made
indistinguishable from – some pre-existing outcome so that the ‘effective’ number of outcomes remains the same.
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