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Abstract. We introduce the first minimal and complete equational theory for quantum circuits. Hence,
we show that any true equation on quantum circuits can be derived from simple rules, all of them being
standard except a novel but intuitive one which states that a multi-control 2π rotation is nothing but the
identity. Our work improves on the recent complete equational theories for quantum circuits, by getting rid
of several rules including a fairly impractical one. One of our main contributions is to prove the minimality
of the equational theory, i.e. none of the rules can be derived from the other ones. More generally, we
demonstrate that any complete equational theory on quantum circuits (when all gates are unitary) requires
rules acting on an unbounded number of qubits. Finally, we also simplify the complete equational theories
for quantum circuits with ancillary qubits and/or qubit discarding.

Since its introduction in the 1980s, the quantum circuit model has become ubiquitous in quantum
computing, and a cornerstone of quantum software. Transforming quantum circuits is a central task in
the development of the quantum computer, for circuit optimisation (such as minimizing the number
of gates, T-gates, and CNot gates, as well as reducing circuit depth), for ensuring compatibility with
hardware constraints, and for enabling fault-tolerant computations [15,19,20,21,22]. Such transforma-
tions can be achieved through the use of an equational theory, i.e. roughly speaking, a set of rules
which allow one to replace a piece of circuit with an equivalent one. An equational theory is complete
when any true equation can be derived. In other words, if two circuits represent the same unitary
transformation, completeness ensures that they can be transformed into each other using only the
rules of the equational theory.

From a foundational perspective, a complete equational theory can be regarded as a set of axioms
or principles that govern the behaviour of quantum circuits. Therefore, it is important to establish
concise and meaningful rules that accurately capture the properties of quantum circuits.

Several equational theories have been demonstrated to be complete for specific, non-universal
fragments of quantum circuits, like Clifford circuits [23], 1- and 2-qubit Clifford+T circuits [4], 3-
qubit Clifford+CS [5], CNOT-dihedral circuits [1]. Recently, a first complete equational theory for
arbitrary quantum circuits was introduced [9]. Derived from a complete equational theory for photonic
circuits [8] through an elaborate completion procedure, this original complete equational theory for
quantum circuits contained a few cumbersome rules, some of them have been shown to be derivable
in [7]. There remained however a family of equations acting on an unbounded number of qubits, and
involving a dozen parameters with non trivial relations among them (see Equation (E3D)), leaving
open the question of whether such a family of intricate equations is necessary.
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We introduce a concise and meaningful equational theory for quantum circuits, presented in its
simplest form in Figure 1, where quantum circuits are considered up to global phases.1 The main
novelty, in terms of rules, is that the intricate rule (E3D) is replaced by the following equation:
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1 When considering quantum circuits with global phases, the equational theory has two additional very simple equations
that govern the behaviour of the global phases.
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Fig. 1: Minimal and complete equational theory for quantum circuits up to global phases.

Semantically, (I) is trivial: a 2π Z-rotation is nothing but the identity, hence its controlled version
is also the identity whatever the number of control qubits is. Syntactically, the multi-control gates are
defined inductively and thus are shortcut notations for large circuits containing only basic generators
H , P (φ) and .

Each equation of Figure 1 has a simple and meaningful interpretation: (H2) means that H is self
inverse; (P0) that a rotation of angle 0 is the identity; (C) that CNot is self inverse (when φ = 0), and
also that P (φ) and CNot commute on the control qubit; (B) essentially that composing 3 CNots is a
swap; (CZ) that a Control-Z can be implemented in two ways using either one or two CNots; (EH) is
the Euler decomposition of H; and finally (E) relates two possible Euler decompositions into Z- and
X-rotations.

Our main result is to prove that the equational theory we introduce in Figure 1 is complete
and minimal. While completeness ensures that any valid equation involving quantum circuits can be
derived from these rules, minimality guarantees that none of the equations in Figure 1 can be derived
from the other equations.

Theorem 1. The equational theory presented in Figure 1 is complete and minimal.

In particular, for any n0 ≥ 2, the instance of (I) with n0 control qubits cannot be derived from
the other instances of (I) together with the other rules of Figure 1. Beyond the minimality of this
particular equational theory, one of our main contributions is to show that there is no complete
equational theories acting on a bounded number of qubits for vanilla2 quantum circuits.

Theorem 2. There is no complete equational theory for vanilla quantum circuits made of equations
acting on a bounded number of qubits. More precisely any complete equational theory for n-qubit vanilla
quantum circuits has at least one rule acting on n qubits.

Minimality does not imply uniqueness. Depending on the context, it might be relevant to consider
alternative equational theories. For instance, we show that one can replace the Equations (EH) and
(E) by
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leading to an equational theory which is also complete and minimal. Equation (E’) – introduced for the
first time, up to our knowledge, in the context of the ZX-calculus [12,27] – is an alternative formulation
of the Euler decomposition with only two parameters on the left-hand side of the equation.

We provide in this paper the first minimal equational theory for quantum circuits. Indeed, the
question of the minimality is still open for the complete equational theories equipping non-universal
fragments of quantum circuits, like Clifford [23], 2-qubit Clifford+T [4], and 3-qubit Clifford+CS
[5]. More broadly, this is one of the first minimality results for a graphical language for quantum
computing. Indeed, whereas the first completeness results for universal graphical quantum languages
have been obtained through the ZX-calculus [16,17,13,18], and despite a great effort and significant
progresses in the recent years, only nearly minimal3 equational theories have been introduced for the

2 By vanilla quantum circuits we mean that all gates are unitary, in particular there is no qubit initialisations, ancillary
qubits or discarding.

3 Here nearly minimal means that a majority of the rules, but not all, have been proved to be underivable form the
other ones.
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ZX-calculus [2,3,24,27] and its variants like the ZH-calculus [25,26]. In all these cases, the minimality
of the provided complete equational theories is still open. Only the PBS-calculus is equipped with
complete and minimal equational theories [10,11], notice however that the PBS-calculus focuses on
coherent control and can only represent some specific oracle-based evolutions called superpositions
of linear maps. In other words, the PBS-calculus can be seen as a construction to provide coherent
control capabilities to arbitrary (graphical) quantum language.

Beyond vanilla quantum circuits, one can define equational theories for quantum circuits with
ancilla and/or qubit discarding (or trace out). Various constructions exist to transport a complete
equational theory for vanilla quantum circuits to these settings [14,6]. In [7], it has been shown that
the intricate Equation (E3D) can be derived from its 2-qubit case in the presence of ancillary qubits
and/or discarding. We show that Equation (E3D) is not necessary at all. Indeed we derive from the
equational theory of Figure 1 simple complete equational theories, acting on a bounded number of
qubits (namely at most 3), for quantum circuits with ancillary qubits (see Figure 2) and/or discarding
(see Figure 3).
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Fig. 2: Complete equational theory for quantum circuits with ancillae up to global phases.
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Fig. 3: Complete equational theory for quantum circuits with discard.
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