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We study quantitative properties of quantum programs such as (positive) almost-sure termination, ex-
pected runtime or expected cost, that is, for example, the expected number of applications of a given
quantum gate, etc. After studying the completeness of these problems in the arithmetical hierarchy
over the Clifford+T fragment of quantum mechanics, we express these problems using a variation of a
quantum pre-expectation transformer, a weakest pre-condition based technique that allows to symbol-
ically compute these quantitative properties. Under a smooth restriction—a restriction to polynomials
of bounded degree over a real closed field—we show that the quantitative problem, which consists in
finding an upper-bound to the pre-expectation, can be decided in time double-exponential in the size
of a program. Finally, we sketch how the latter can be transformed into an efficient synthesis method.
This paper is a summary of a work which has been published at the 33rd European Symposium on
Programming, ESOP 2024 and is available at https://arxiv.org/abs/2312.13657.

1 Introduction

Motivations. In this work, we study formal methods that can be used to obtain quantitative properties
about the computations of a quantum program, such as the number of qubits used and the number of
unitary operators used, thus enabling the corresponding compiled quantum circuit to be optimized (for
example, by minimizing the use of gates that are hard to make fault-tolerant, or by reducing the number
of qubits) or to avoid undesirable behavior such as non-termination. Another quantitative property of
interest may also be the question whether or not a program terminates almost-surely, that is, whether its
probability of non-termination is zero or not. Similarly, we could aim to capture the expected values of
(classical) program variables upon program termination. The latter can also be employed to reason about
the expected runtime or the expected cost of quantum programs, if we suitably instrument the code with
counter variables.

To illustrate this, the program of Figure 1 implements a Repeat-Until-Success algorithm that can
be used to simulate quantum unitary operators on input qubit q1 by using repeated measurements. The
quantum step-circuit on the right part corresponds to one iteration of the loop. Variable i in the program
just acts as a counter for T-gates. Hence an analysis on the expected value of variable i can be used
to infer an upper-bound on the expected T-count, i.e., the expected number of times a T-gate is used
by the program. As T-gates are known to be costly to implement fault-tolerantly [BK05, GKMR14], it
illustrates that the study of quantitative properties is paramount.

In [AMP+22, LZBY22], new methodologies named quantum expectation transformers based on
predicate transformers [Dij76, Koz85] and expectation transformers [MM05, GKM14] have been put
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RUS , i= 0;
x= true;
while x do {
q2 = |0〉;
q2 ∗= H;
q2 ∗= T;
i= i+1

q2,q1 ∗= CNOT;
q2 ∗= H;
q2,q1 ∗= CNOT;
q2 ∗= T;
i= i+1

q2 ∗= H;
x= meas q2
}
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Figure 1: Repeat-until-success program RUS and step-circuit.

forward to naturally express and study the quantitative properties of quantum programs. However, no at-
tempt was made to automate the corresponding techniques or delineate how complicated such an automa-
tion could be. Automation of these formal verification techniques in the context of quantum programs is
a particularly difficult problem. Indeed, the consideration of Hilbert spaces as a mathematical framework
for describing principles and laws of quantum mechanics makes it seemingly impossible to reason fully
automatically about quantitative properties of quantum program: they involve computational objects of
exponential dimensions (in the number of qubits) with scalars ranging over an uncountable domain (i.e.,
complex numbers C). This problem is directly linked to the fact that the set C includes non-computable
numbers [Wei12] and that testing the inequality < or the equality = of two real numbers is not decid-
able, even if one restricts their study to computable real numbers. Consequently, the particular nature of
quantum programs and of their semantic domain, Hilbert spaces, makes it impossible to directly apply
the results obtained in the classical and probabilistic setting [SS11, KK15].

Contributions. In this talk, we study the hardness of the quantitative properties of mixed classical-
quantum programs and provide a first step towards their (full) automation using quantum expectation
transformers. To this end, we restrict the considered quantum gates to the Clifford+T fragment, which is
known to be the simplest approximately universal fragment of quantum mechanics [AG04]. Clifford+T
makes it possible to only consider quantum states with algebraic amplitudes, thus restricting the study
to a countable domain. It implies that our results can accommodate quantum gates employed in actual
hardware, recently employed to claim quantum advantage, cf [AAe19]. Moreover, the obtained results
are very general as it can be extended to any set of gates with algebraic coefficients.

As motivated, our first contribution is about the general hardness of deciding quantitative properties
for mixed classical-quantum programs. For a given input state, we study properties such as:

• (positive) almost-sure termination, (P)AST for short, which consists in checking the a program
terminates with probability 1 (and finite expected runtime);

• testing problems, TESTR , which consist in comparing a quantum expectation (for example, the
mean value of a variable) with a given value (an algebraic and positive real number) with respect
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Standard Universal

Problem Class Problem Class

Testing TEST> Σ0
1 UTEST> Π0

2
TEST≥ Π0

2 UTEST≥ Π0
2

TEST= Π0
2 UTEST= Π0

2
TEST≤ Π0

1 UTEST≤ Π0
1

TEST< Σ0
2 UTEST< Π0

3

Finiteness TEST 6=∞ Σ0
2 UTEST 6=∞ Π0

3

Termination AST Π0
2 UAST Π0

2
PAST Σ0

2 UPAST Π0
3

Table 1: Completeness results for quantitative problems in the arithmetical hierarchy.

qet[skip ]{ f}, f

qet[x= e ]{ f}, f [x := e]

qet[stm1; stm2 ]{ f}, qet[stm1 ]{qet[stm2 ]{ f}}
qet[if b then stm1 else stm2 ]{ f}, qet[stm1 ]{ f}+JbK qet[stm2 ]{ f}

qet[while b do stm ]{ f}, lfp
(
λF.qet[stm ]{F}+JbK f

)
qet[q ∗= U ]{ f}, f [ΦUq

]

qet[x= meas qi ]{ f}, f [x := 0; m0,i] +p0,i f [x := 1; m1,i].

Figure 2: Quantum expectation transformer qet[ · ]{·}

to the relation R;

• the finiteness problem, TEST 6=∞, which consists in checking that a quantum expectation is finite.

For each of those problems, we also study the related universal problem, which consists in checking
the corresponding property for every input. We establish a precise mapping of the inherent complexity
of each problem in the arithmetical hierarchy [Odi92] that is summarized in Table 1. E.g., AST is Π0

2-
complete while PAST is Σ0

2-complete.
Our second contribution aims to overcome the aforementioned undecidability results. For that, we

study approximations of quantum expectation transformers introduced in [AMP+22]. More precisely,
we focus on inferring bounding functions (in general depending on the input) on the expected values of
classical program variables upon termination.

The quantum expectation transformer consists in a program semantics mapping expectations to ex-
pectations in a continuation passing style

qet[ · ]{·} : Stmt→ (St→ R+∞)→ (St→ R+∞),

where Stmt is the set of program statements, St is the set of (classical and quantum) memory states, and
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continuity qet[stm ]{supi fi}= supiqet[stm ]{ fi}
monotonicity f ≤ g⇒ qet[stm ]{ f} ≤ qet[stm ]{g}
upper invariance (¬b⇒ f ≤ g)∧ (b⇒ qet[stm ]{g} ≤ g)⇒ qet[while b do stm ]{ f} ≤ g

Figure 3: Universal laws derivable for the quantum expectation transformer.

R+∞ is the set of non-negative real numbers, including ∞. Quantum expectation transformers are defined
inductively on statements in Figure 2.

Quantum expectation transformers provide a denotational semantics to quantum programs (as de-
scribed in [AMP+22]) and, hence, are not computable in general. This drawback is a consequence of the
least fixpoint computation for while loops in Figure 2 and can be avoided by considering upper-bound
approximations as described by the upper invariance rule of Figure 3. Using this rule, the decision
problem has thus been altered to an inference problem. Further, we restrict the set of potential bounding
functions. As a suitable class of functions, we consider polynomials over the real-closed field of the
algebraic numbers. The restriction to algebraic numbers guarantees that comparison operations between
real numbers remain decidable. On the other hand, for any real closed field, quantifier elimination for
formulas over polynomials is decidable, that is, there exists a double-exponential algorithm computing
a quantifier-free formula equivalent to the original formula [HRS90]. This recasting of the problem and
restriction of the solution space suffices to render the problem decidable. The inference algorithm estab-
lished remains double-exponential, thus of similar complexity as the underlying quantifier elimination
procedure.

Finally, our last contribution studies effective automation of the inference of upper bounds on the
expected values of program variables. To improve upon the double-exponential complexity, we further
restrict the class of polynomials considered, that is, to degree-2 polynomials and sketch how techniques
from optimization theory can be employed. Several simple quantum algorithms such as program RUS

can be analyzed using this approach. This further reduction in expressivity allows the encoding of the
problem in SMT and thus paves the way towards (full) automation.
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