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Abstract. Third-level gates are those that can be most easily implemented fault-tolerantly
using magic states. Those that are semi-Clifford can be implemented with far more efficient use
of resources. We prove that every third-level gate of up to two qudits is semi-Clifford. We thereby
generalise results of Zeng-Chen-Chuang (2008) in the qubit case and of the second author (2020)
in the qutrit case to the case of qudits of any prime dimension d.

Earlier results relied on exhaustive computations whereas our present work leverages tools of
algebraic geometry which can be applied more widely within quantum information. Specifically,
we construct two schemes corresponding to the sets of third-level Clifford hierarchy gates and
third-level semi-Clifford gates. We then show that the two algebraic sets resulting from reducing
these schemes modulo d share the same set of rational points.

1 Overview

Gates of the third level of the Clifford hierarchy
play a central role in fault-tolerant quantum com-
putation. Within the dominant stabiliser framework
for quantum error correction, they are the natural
choice for promoting the group of Clifford gates to a
universal gate set. This is because they can be im-
plemented fault-tolerantly using only Clifford gates
and a preprepared magic state. The vast quantity
of these resources states required for achieving fault-
tolerance is a significant bottleneck for experimental
implementations of quantum computers.
A subset of the third-level gates are semi-Clifford.

These gates can be implemented using magic states
of half the size needed for standard third-level gates.
The urgency of reducing the overhead of fault-
tolerance motivates the characterisation of semi-
Clifford gates; of particular importance are the most
common cases of one- or two-qubit gates. Research
into the Clifford hierarchy and semi-Clifford gates
has remained active from their discovery twenty-five
years ago to the present [1, 3, 9, 12, 15, 16, 21, 22].
Zeng-Chen-Chuang [21] showed that all two-qubit

third-level gates are semi-Clifford. The second au-
thor of the present work extended this result to
qutrits [9]. In both cases, exhaustive computations
that do not extend to higher dimensions were used.
The main result of the present work is:

Theorem 1 For any odd prime dimension, ev-
ery two-qudit third-level gate is semi-Clifford.
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In order to establish our result for infinitely many
dimensions simultaneously, our mathematical argu-
ments are necessarily highly abstract. We employ
tools of algebraic geometry—including some which
have yet to be applied within quantum information.
We first transform our original question into one

about two systems of polynomial equations over the
finite field Zd. Therefore, our result follows from
showing that two geometric spaces (specifically, al-
gebraic sets), one arising from the set of third-level
gates and the other from its subset of semi-Clifford
gates, share the same set of (rational) points. Using
schemes, an even more abstract notion of geometric
space, we are able establish our result for all prime
dimensions with only one series of computations.
The immediate impact of our results is to provide

many more pathways towards efficiently achieving
fault-tolerant universal quantum computing with
qudits. Qudit-based computation promises in-
creased capacity and efficiency [4, 19]. The ad-
vantages of qudit-based computation has led to
rapidly accelerating development by experimental-
ists [5, 6, 13, 14, 17, 18, 20]. In the future, once quan-
tum technology has progressed, we expect qudit-
based computation to become commonplace.
Our work will also have a broader impact on quan-

tum information as our mathematical methods are
widely applicable to answering a range of structural
questions within the stabiliser formalism.
The full preprint is available at https://arxiv.

org/abs/2309.15184 and is in press at Communi-
cations in Mathematical Physics.

2 Background

Building a large-scale practical quantum com-
puter will require efficient methods of fault-tolerance
and error correction. The most common family



of quantum error correcting codes are stabiliser
codes [11]. They are built up from Pauli gates
and their eigenstates. Clifford gates, which pre-
serve the Paulis under conjugation, are special in
that they can be fault-tolerantly applied to encoded
data. Quantum universality, however, further re-
quires the ability to fault-tolerantly perform non-
Clifford gates. Third-level gates can be determin-
istically and fault-tolerantly performed via the gate
teleportation protocol using only Clifford gates sup-
plemented with ancillary magic state resources [12].
Thus, non-Clifford third-level gates are critical to
achieving fault-tolerant quantum computation.
A significant practical barrier to achieving quan-

tum universality via the supplementation of Clifford
gates with magic states is the need to prepare such
states for every desired application of a non-Clifford
gate. The original gate teleportation protocol imple-
mented n-qubit third-level gates using magic states
of 2n qubits. The need to reduce the burden of this
substantial resource overhead cost led to the study
of more efficient gate teleportation protocols.
Diagonal third-level gates can be implemented us-

ing magic states of only n qubits [22]. This was gen-
eralised to the ‘nearly diagonal’ semi-Clifford gates,
i.e. those gates G such that G = C1DC2 for C1, C2

being Clifford gates and D a diagonal gate [21]. It is
known that all Clifford hierarchy gates of one or two
qubits is semi-Clifford (via a proof involving exhaus-
tive computation) and that, for more qubits, there
are gates in every level that are not semi-Clifford
[3, 21].
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Figure 1: Efficient gate teleportation protocol for a
one-qudit semi-Clifford gate G = C1DC2.

Efficient gate teleportation was first studied in the
qudit setting by the second author of the present
work [9]. In this work, an abstract formalism for
studying the Clifford hierarchy based on the foun-
dational Stone-von Neumann theorem was intro-
duced. This framework and several of the results
derived from it play an essential role below. It was
shown that all two-qutrit third-level gates are semi-
Clifford. However, this proof also required exhaus-
tive computation due to the mathematical difficulty
of establishing it analytically.

3 Tools and Methodology

3.1 Quantum information

Conjugate tuples Let Zi, Xi resp. be the Pauli
gate Z,X resp. on the i-th qudit and identity on
all others. Then any gate G yields an ordered set
of 2n gates {(GZiG

∗, GXiG
∗)}i∈[n] by conjugating

the basic Paulis. Since Zi, Xi obey the Weyl com-
mutation relations, so do their conjugated versions.
Remarkably, this process can be reversed: from any
ordered set of 2n gates obeying the Weyl commuta-
tion relations, the gate G can be reconstructed up to
phase. It is shown in [9], extending Beigi-Shor [3],
that gates of the Clifford hierarchy are most fruit-
fully studied via their conjugate tuple.

Simplified third-level gates We call a third-
level gate simplified if its conjugate tuple takes a
simple form: every member is the product of a di-
agonal Clifford gate and a Pauli gate. From Cui-
Gottesman-Krishna [8], we know that diagonal Clif-
ford gates correspond to quadratic polynomials over
the finite field Zd. By applying a classification of
maximal abelian subgroups of the symplectic group
due to Barry [2], we can show that every third-level
gate can be conjugated by a Clifford gate to give a
simplified one. We can thereby work with discrete
combinatorial data to describe a third-level gate
rather than a complex unitary matrix. We char-
acterise which tuples of elements of Zd arise from
simplified third-level gates using a family of polyno-
mial equations F1 and those which are semi-Clifford
with an additional such family F2.

3.2 Algebraic geometry

Nullstellensatz The interplay between algebra
and geometry that forms the basis of algebraic ge-
ometry arises from a correspondence between the so-
lution sets of polynomial equations and certain kinds
of ideals in a ring of polynomials called radical ide-
als. Having transformed our original problem con-
cerning third-level and semi-Clifford gates into one
concerning the equivalence of two geometric spaces,
we use the Nullstellensatz to transform the prob-
lem into one concerning the equality of two radical
ideals.

Computational algebra The advantage of the
algebraic formulation of our problem is that it can
be solved by a series of computations. In particu-
lar, we establish the required equality between the
solution space of F1 and F1 ∪F2 by analysing a de-
composition of their corresponding ideals. This is



enabled using techniques involving Groebner bases
[7] that can be performed using the computational
algebra system Magma. Applying these techniques
are far from straightforward, however, as they are
feasible only for systems far simpler than the ones
we are interested in.

Schemes Introduced by Grothendieck in 1960,
schemes [10] are geometric spaces that generalise
algebraic sets in order to provide a foundation
for modern algebraic geometry and number theory.
They are analogous to differentiable manifolds; in-
stead of looking locally like a space on which one can
use calculus (e.g. Rn), a scheme looks locally like a
space on which one can use algebra (in a general
commutative ring). The language of schemes mo-
tivates and provides a framework to establish our
result for infinitely many dimensions at once.

4 Main Results

We summarise our main results at a high level as
a series of steps towards establishing Theorem 1.

1. We show that all two-qudit third-level gates
are semi-Clifford if and only if all simplified
two-qudit third-level gates are semi-Clifford.

2. We show that all simplified third-level gates
yield a tuple of elements of Zd that is a solution
to a family F1 of polynomial equations.

3. We show that a simplified third-level gate is
semi-Clifford if its tuple of elements of Zd

also satisfies a second family F2 of polynomial
equations.

4. Using the Nullstellensatz, the our main the-
orem will follow from showing that the two
radical ideals that correspond to the two al-
gebraic sets constructed from third-level and
semi-Clifford gates are the same. In princi-
ple, the computation of radical ideals can be
performed algorithmically, e.g. by a computer
algebra system such as Magma.

5. In practice, the families F1,F1∪F2 of polyno-
mial equations are far too complex and involve
far too many variables to be amenable to com-
putation. We therefore perform a series of re-
ductions that decrease the number of variables
involved and replace our families of polyno-
mial equations with simpler ones. For exam-
ple, we weaken a family of quadratic equations
and replace them with a linear system. We

show that consistency of this system requires
satisfying one of two highly complex polyno-
mials in fewer variables.

6. Simplifying our systems of equations comes
at the cost of requiring additional mathemat-
ical arguments to show that our feasible com-
putation establishes that two-qudit third-level
gates are semi-Clifford, which we supply.

7. Technically, one would have to perform a dif-
ferent computation for each odd prime dimen-
sion d. We provide an argument, using the lan-
guage of schemes, that allows a single compu-
tation to establish our result for all dimensions
simultaneously. Specifically, we demonstrate
the isomorphism of two schemes that corre-
spond to third-level and semi-Clifford gates;
our result follows by reducing these schemes
to deduce the desired equality of algebraic sets
for each dimension d.

5 Impact and Future Work

A natural follow-up question to our work is to
generalise our result to higher levels of the Clifford
hierarchy. We can also extend our techniques to gen-
eralise counterexamples of Zeng-Chen-Chuang [21]
and Gottesman–Mochon to higher dimensions; that
is, find examples of n-qudit k-th level gates that are
not semi-Clifford when n > 2, k > 3 or n > 3, k = 3.
This work significantly advances the program of

classifying gates of the Clifford hierarchy and semi-
Clifford gates. Deeper mathematical understanding
of the Clifford hierarchy and semi-Clifford gates will
lead to more efficient circuit and gate synthesis. It
further bolsters the viability of qudit-based fault-
tolerant universal quantum computers by providing
complete sets of efficient gate teleportation proto-
cols. This is practically important as qudit magic
state distillation has been proposed as a significantly
more efficient alternative to the qubit case [4]. This,
and other advantages of qudits, are driving current
experimental research.
The abstract mathematical techniques developed

to solve our problem are widely applicable to many
more problems within quantum information. We
give a blueprint for solving any problem that can be
recast in terms of the equivalence of solution sets of
polynomial equations over Zd. This is a potentially
very broad class of problems given that the domi-
nant stabiliser formalism for quantum error correc-
tion is based on the standard representation of the
Heisenberg-Weyl group over Zd.
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