
A Programming Language Characterizing Quantum Polynomial Time

Emmanuel Hainry, Romain Péchoux, Mário Silva
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

June 14, 2024

Abstract

We introduce a first-order quantum programming language, named foq, whose terminating programs
are reversible. We restrict foq to a strict and tractable subset, named pfoq, of terminating programs
with bounded width, that provides a first programming-language-based characterization of the quantum
complexity class fbqp. We finally present a tractable semantics-preserving algorithm compiling a pfoq
program to a quantum circuit of size polynomial in the number of input qubits. Published in FoSSaCS
2023 and available at https://doi.org/10.1007/978-3-031-30829-1_8.

1 Introduction

The promise of a quantum computer requires the de-
velopment of different layers of hardware and soft-
ware, together referred to as the quantum stack. Pro-
gramming languages constitute one of the highest
layers of this stack, providing the tools for reasoning
about quantum programs across different models.

One interesting application of programming lan-
guages is the ability to statically (i.e. without run-
ning the program) infer properties such as validity
or time complexity. This is related to the field of
implicit computational complexity (ICC) [1, 3, 5]. In
ICC, complexity classes are characterized in different
computational paradigms, using syntactical restric-
tions that can be automatically checked.

In the quantum scenario, the set of efficiently
computable functions is the complexity class fbqp
(functions with bounded-error in quantum polyno-
mial time). fbqp is defined as the set of functions
that can be approximated by a quantum Turing ma-
chine running in polynomial time [2], but it has
also been shown to be equivalent to the set of func-
tions approximated by uniform polysized quantum
circuits [8].

Contribution.

� We introduce a quantum programming lan-
guage, named foq, that includes first-order re-
cursive procedures.

� After showing that terminating foq programs
are reversible, we restrict programs to a strict

subset, named pfoq, for polynomial-time foq.
Restrictions of pfoq programs are tractable
(i.e., can be decided in polynomial time in the
program size), and ensure that programs ter-
minate in polynomial time on any input.

� We show that the class of functions com-
puted by pfoq programs is sound and com-
plete for the quantum complexity class fbqp.
Hence the language pfoq is, to our knowledge,
the first programming language characterizing
quantum polynomial time functions.

� We also describe a polynomial-time determin-
istic algorithm that takes in a pfoq program P
and an integer n and outputs a quantum circuit
of size polynomial in n that implements P on
an input of n qubits. We show how our compi-
lation technique avoids the exponential blowup
from quantum branching identified in [9].

Related work. We note two results in the study
of characterizations of quantum polytime classes: [4],
providing a characterization of bqp based on a quan-
tum lambda-calculus, and [7], characterizing fbqp
via a function algebra.

Our work is greatly inspired by [7]. However, we
claim that pfoq is more expressive, as we show that
any function in [7] can be simulated by a pfoq pro-
gram, with the syntactical restrictions of pfoq being
much more permissive than the multi-qubit recursion
scheme described in [7]. As an example, the quan-
tum Fourier transform (Figure 2) requires an addi-
tional initial quantum function to be defined in [7].

1

https://doi.org/10.1007/978-3-031-30829-1_8

(Integers) i fi n | x | i` n | i´ n | |s|, with n P N
(Booleans) b fi i ą i | i ě i | i “ i | b^ b | b_ b | b
(Sorted Sets) s fi nil | q̄ | sa [i]

(Qubits) q fi s[i]

(Operators) Uf piq fi NOT | Rf
Y piq | Phf piq, with f P ZÑ r0, 2πq X R̃

(Statements) S fi skip; | q *= Uf piq; | S S | if b then S else S
| qcase q of t0 Ñ S, 1 Ñ Su | call proc[i]psq;

(Procedure declarations) D fi ε | decl proc[x]pq̄qtSu, D
(Programs) Ppq̄q fi D :: S

Figure 1: Syntax of foq programs.

2 Syntax and example

A program contains a set D of procedure declarations
followed by a program statement S which includes
the instructions of the program, possibly including
calls to procedures in D. These procedures are al-
lowed to be recursive, for example, by including calls
to themselves, and they may include an integer input
x that is used in the procedure body.

The syntax of the language (see Figure 1) does
not include measurements, as these are assumed to
be performed only at the end of the program, and
therefore the running time only depends on the in-
put size. We can perform certain operations depend-
ing on the state of a qubit (qcase) or on a classical
boolean conditions (if), which may depend on some
integer values or the size of the input.

As basic operators we consider the NOT gate,
the phase-shift gate PHASEθ and the y-rotation
gate ROTθ, for polytime approximable angles θ P
r0, 2πq, which form a universal gate set that can be
efficiently implemented.

Quantum variables are handled using sorted sets,
which simply means that the elements of q̄ are or-
dered and point to different qubits, and any sub-
set passed on to a function call does not contain re-
peated elements. Operations with sorted subsets in-
clude accessing the i-th entry, q̄[i], and the set with-
out this entry, denoted q̄ a [i]. We can also access
the length |q̄| of the sorted set in order to branch
classically.

Quantum Fourier Transform

We illustrate the language with the example of the
QFT, used in Shor’s algorithm [6], with code de-
picted in Figure 2. We use quantum-controlled ver-
sions of the Hadamard gate H “ NOT ¨ROTπ{4 and

the rotation gate Rm “ PHASEπ{2m´1 . These two
gates are applied in a doubly recursive pattern by
procedures rec and rot, followed by a reordering of
the qubits which is also done recursively (inv). This
program can then be compiled into the recognizable
circuit in Figure 3.

decl recpq̄qt decl invpq̄qt

q̄[1] *= H; if |q̄| ą 1 then

call rot[2]pq̄q; SWAPpq̄[1], q̄[|q̄|]q;

call recpq̄a [1]q; u, call invpq̄a [1, |q̄|]q;

else skip; u,

decl rot[x]pq̄qt

if |q̄| ą 1 then

qcase q̄[2] of t

0 Ñ skip;

1 Ñ q̄[1] *= Phλx.π{2
x´1
pxq;

u

call rot[x` 1]pq̄a [2]q;

else skip; u ::

call recpq̄q; call invpq̄q;

Figure 2: A pfoq program for QFT.

A property of the recursive procedures is that the
available resources strictly decrease with each recur-
sive call. This property, which we will describe more
precisely in Section 3, ensures that the program ter-
minates, and the fact that there is only one recursive
call per procedure guarantees polytime termination.

2

. . .

. . .

. . .

...
...

...
...

...
...

...
...

...

. . .

. . .

q̄[1] H R2 R3
. . . R|q̄|

q̄[2] H R2

q̄[3]

q̄[|q̄| − 1] H R2

q̄[|q̄|] H

Figure 3: Circuit for the quantum Fourier transform.

3 Restrictions for polytime

To restrict foq to its polytime terminating frag-
ment, we define two criteria: one for ensuring termi-
nation and another to prevent an exponential run-
time from the doubling of procedure calls.

We prevent infinite nesting of procedures by re-
quiring that each recursive call reduce the amount
of available qubits. The relation proci „ procj indi-
cates that there is a call to procj at some point in
the running of proci, and vice-versa, i.e. they are
mutually recursive. We then define the set wf of
well founded programs as the set of programs where
every mutually recursive procedure call strictly de-
creases the number of qubits.

To prevent an exponential number of procedure
calls, we impose the condition that only one mutu-
ally recursive call may be included in each procedure.
We define the width of a procedure as the number
of (mutually) recursive procedure calls that appear
in its body, counting the maximum of each branch.
Therefore, widthPpprocq fi wproc

P pSprocq, where wproc
P

is defined as follows:

wproc
P pskip; q fi 0,

wproc
P pq *= Uf piq; q fi 0,

wproc
P pS1 S2q fi wproc

P pS1q ` w
proc
P pS2q,

wproc
P pcall proc1[i]psq; q fi

#

1 if proc „P proc1,

0 otherwise.

and, in the case of branching, we have that

wproc
P pif b then S0 else S1q, and

wproc
P pqcase q of t0 Ñ S0, 1 Ñ S1uq

are both defined as maxpwproc
P pS0q, w

proc
P pS1qq.

Then, the set pfoq (polytime foq) is the set of wf
programs that satisfy the condition:

@proc P P,widthPpprocq ď 1.

A wf program always terminates, and a program
in pfoq will terminate in polynomial time. Any ter-
minating program admits an inverse. In the follow-
ing, we denote by JPK the semantics of program P.

Theorem 1. All terminating foq programs are re-
versible: if P terminates, we can construct a program
P´1 such that JP´1K ˝ JPK “ Id.

The following theorems state more precisely the
relation pfoq and fbqp.

Theorem 3 (Soundness). Given a program P P

pfoq , a function f : t0, 1u˚ Ñ t0, 1u˚, and a value
p P p12 , 1s, if f is computed by JPK with probability p
then f P fbqp.

Given a polynomial Q and quantum state |xy let
φQp|xyq be the function that returns the state |xy
preceded by some extra writing space, linear in Q,
used to perform internal computations.

Theorem 6 (Completeness). For every function f
in fbqp with polynomial bound Q P NrXs, there is a
pfoq program P such that JPK˝φQ computes f with
probability 2

3 .

Our completeness proof is done by showing that
pfoq is expressive enough to implement the function
algebra in [7]. In particular, we allow for a more gen-
eral recursion scheme.

Our soundness proof is done by showing that,
for any pfoq program P, there exists a polytime
quantum Turing machine that implements JPK. We
also give a second (and more practical) soundness
proof by describing a polynomial time algorithm
that, given a pfoq program P and a natural num-
ber n, computes the circuit implementing JPK on an
input of n qubits.

3

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

q̄[1]

q̄[2]

U
q̄[3]

U
q̄[4]

|0y

|0y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

q̄[1]

q̄[2]

U
q̄[3]

q̄[4]

|0y

|0y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 4: Example of circuit optimization.

4 Compilation strategy

Given Yao’s equivalence result between uniform fam-
ilies of circuits and polytime quantum Turing ma-
chines [8], the existence of uniform families of cir-
cuits implementing pfoq programs is not surprising.
However, any practical implementation requires a di-
rect compilation strategy, without an intermediate
quantum Turing machine representation.

Surprisingly, it is not obvious how to directly
generate the circuit for a program while preserv-
ing its polynomial time complexity. If we consider
the statement for quantum branching (qcase), while
the time complexity in the QTM model is the max-
imum of each branch, in the circuit model we are
required to perform them in sequence. This disanal-
ogy between branching in QTMs and circuits, more
recently coined as “branch sequentialization” [9], can
generate an exponential blowup in the size of the fi-
nal circuit.

In this work, we describe a merging technique,
exemplified in Figure 4, that uses ancillas and con-
trolled swap operations to combine equal procedure
calls that occur in different branches. This allows
us to avoid the exponential blowup from branch se-
quentialization in pfoq programs.

Acknowledgements

Tha authors would like to thank the anonymous re-
viewers for their feedback on this extended abstract.

This work is supported by the Inria associate
team TC(Pro)3v, the Plan France 2030 through
the PEPR integrated project EPiQ ANR-22-PETQ-
0007, and the HQI initiative ANR-22-PNCQ-0002.

References

[1] Stephen Bellantoni and Stephen Cook. A
new recursion-theoretic characterization of the
polytime functions. computational complexity,
2(2):97–110, Jun 1992.

[2] Ethan Bernstein and Umesh Vazirani. Quantum
complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997.

[3] Ugo Dal Lago. A short introduction to implicit
computational complexity. In ESSLLI 2010,
pages 89–109, 2011.

[4] Ugo Dal Lago, Andrea Masini, and Margherita
Zorzi. Quantum implicit computational
complexity. Theoretical Computer Science,
411(2):377–409, 2010.

[5] Romain Péchoux. Implicit computational com-
plexity: past and future. Mémoire d’habilitation
à diriger des recherches, 2020. Université de Lor-
raine.

[6] Peter W. Shor. Algorithms for quantum com-
putation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Founda-
tions of Computer Science, pages 124–134, 1994.

[7] Tomoyuki Yamakami. A schematic definition
of quantum polynomial time computability. J.
Symb. Log., 85(4):1546–1587, 2020.

[8] Andrew Chi-Chih Yao. Quantum circuit com-
plexity. In Proceedings of 1993 IEEE 34th An-
nual Foundations of Computer Science, pages
352–361, 1993.

[9] Charles Yuan and Michael Carbin. Tower: data
structures in quantum superposition. Proceed-
ings of the ACM on Programming Languages,
6(OOPSLA2):259–288, Oct 2022.

4

	Introduction
	Syntax and example
	Restrictions for polytime
	Compilation strategy

