A Programming Language Characterizing Quantum Polynomial Time

Emmanuel Hainry, Romain Péchoux, Mario Silva
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

June 14, 2024

Abstract

We introduce a first-order quantum programming language, named FOQ, whose terminating programs
are reversible. We restrict FOQ to a strict and tractable subset, named PFOQ, of terminating programs
with bounded width, that provides a first programming-language-based characterization of the quantum
complexity class FBQP. We finally present a tractable semantics-preserving algorithm compiling a PFOQ
program to a quantum circuit of size polynomial in the number of input qubits. Published in FoSSaCS
2023 and available at https://doi.org/10.1007/978-3-031-30829-1_8.

1 Introduction

The promise of a quantum computer requires the de-
velopment of different layers of hardware and soft-
ware, together referred to as the quantum stack. Pro-
gramming languages constitute one of the highest
layers of this stack, providing the tools for reasoning
about quantum programs across different models.

One interesting application of programming lan-
guages is the ability to statically (i.e. without run-
ning the program) infer properties such as validity
or time complexity. This is related to the field of
implicit computational complexity (ICC) [1,3,5]. In
ICC, complexity classes are characterized in different
computational paradigms, using syntactical restric-
tions that can be automatically checked.

In the quantum scenario, the set of efficiently
computable functions is the complexity class FBQP
(functions with bounded-error in quantum polyno-
mial time). FBQP is defined as the set of functions
that can be approximated by a quantum Turing ma-
chine running in polynomial time [2], but it has
also been shown to be equivalent to the set of func-
tions approximated by uniform polysized quantum
circuits [8].

Contribution.

e We introduce a quantum programming lan-
guage, named FOQ, that includes first-order re-
cursive procedures.

e After showing that terminating FOQ programs
are reversible, we restrict programs to a strict

subset, named PFOQ, for polynomial-time FOQ.
Restrictions of PFOQ programs are tractable
(i.e., can be decided in polynomial time in the
program size), and ensure that programs ter-
minate in polynomial time on any input.

e We show that the class of functions com-
puted by PFOQ programs is sound and com-
plete for the quantum complexity class FBQP.
Hence the language PFOQ is, to our knowledge,
the first programming language characterizing
quantum polynomial time functions.

e We also describe a polynomial-time determin-
istic algorithm that takes in a PFOQ program P
and an integer n and outputs a quantum circuit
of size polynomial in n that implements P on
an input of n qubits. We show how our compi-
lation technique avoids the exponential blowup
from quantum branching identified in [9].

Related work. We note two results in the study
of characterizations of quantum polytime classes: [4],
providing a characterization of BQP based on a quan-
tum lambda-calculus, and [7], characterizing FBQP
via a function algebra.

Our work is greatly inspired by [7]. However, we
claim that PFOQ is more expressive, as we show that
any function in [7] can be simulated by a PFOQ pro-
gram, with the syntactical restrictions of PFOQ being
much more permissive than the multi-qubit recursion
scheme described in [7]. As an example, the quan-
tum Fourier transform (Figure |2)) requires an addi-
tional initial quantum function to be defined in [7].

https://doi.org/10.1007/978-3-031-30829-1_8

(Integers) i =2 nlx|i+n|i—-n]|ls|, withneN
(Booleans) b =2 i>i|izi|i=i|bAab|bvb]|-b
(Sorted Sets) s = qil | q|sOl]
(Qubits) q = gfj]
(Operators) Uf(i)) = NOT |RL()|Ph/(i), with feZ—[0,27) "R
(Statements) S = gkip; | q *= Uf(i); | SS | if b then S else S
| gcase q of {0 — S,1 — S} | call procli](s);
(Procedure declarations) D = ¢ | decl proc[x](q){S}, D
(Programs) P(@ = D=:S

Figure 1: Syntax of FOQ programs.

2 Syntax and example

A program contains a set D of procedure declarations
followed by a program statement S which includes
the instructions of the program, possibly including
calls to procedures in D. These procedures are al-
lowed to be recursive, for example, by including calls
to themselves, and they may include an integer input
x that is used in the procedure body.

The syntax of the language (see Figure [1)) does
not include measurements, as these are assumed to
be performed only at the end of the program, and
therefore the running time only depends on the in-
put size. We can perform certain operations depend-
ing on the state of a qubit (qcase) or on a classical
boolean conditions (if), which may depend on some
integer values or the size of the input.

As basic operators we consider the NOT gate,
the phase-shift gate PHASFEy and the y-rotation
gate ROTy, for polytime approximable angles 6 €
[0,27), which form a universal gate set that can be
efficiently implemented.

Quantum variables are handled using sorted sets,
which simply means that the elements of q are or-
dered and point to different qubits, and any sub-
set passed on to a function call does not contain re-
peated elements. Operations with sorted subsets in-
clude accessing the i-th entry, qi], and the set with-
out this entry, denoted q © [i]. We can also access
the length |q| of the sorted set in order to branch
classically.

Quantum Fourier Transform

We illustrate the language with the example of the
QFT, used in Shor’s algorithm [6], with code de-
picted in Figure [2 We use quantum-controlled ver-
sions of the Hadamard gate H = NOT - ROT}; 4 and

the rotation gate Ry, = PHASE jam-1. These two
gates are applied in a doubly recursive pattern by
procedures rec and rot, followed by a reordering of
the qubits which is also done recursively (inv). This
program can then be compiled into the recognizable
circuit in Figure 3.

decl rec(q){ decl inv(q){

q1] *= H; if |g| > 1 then
call rot[2](q); SWAP (q[1], q[ldl]);
call rec(qO[1)); }, call inv(qO [1, |al]);
else skip; },
decl rot[x](q){
if |g| > 1 then
gcase 2] of {
0 — skip;

1 — q[1] *= PRA*™/2" (x);
}

call rot[x + 1)(q O [2]);
else skip; } ::

call rec(q); call inv(q);

Figure 2: A PFOQ program for QFT.

A property of the recursive procedures is that the
available resources strictly decrease with each recur-
sive call. This property, which we will describe more
precisely in Section 3, ensures that the program ter-
minates, and the fact that there is only one recursive
call per procedure guarantees polytime termination.

i
als)
allal - 1 R
allal) (1]

Figure 3: Circuit for the quantum Fourier transform.

3 Restrictions for polytime

To restrict FOQ to its polytime terminating frag-
ment, we define two criteria: one for ensuring termi-
nation and another to prevent an exponential run-
time from the doubling of procedure calls.

We prevent infinite nesting of procedures by re-
quiring that each recursive call reduce the amount
of available qubits. The relation proc; ~ proc; indi-
cates that there is a call to proc; at some point in
the running of proc;, and vice-versa, i.e. they are
mutually recursive. We then define the set WF of
well founded programs as the set of programs where
every mutually recursive procedure call strictly de-
creases the number of qubits.

To prevent an exponential number of procedure
calls, we impose the condition that only one mutu-
ally recursive call may be included in each procedure.
We define the width of a procedure as the number
of (mutually) recursive procedure calls that appear
in its body, counting the maximum of each branch.
Therefore, widthp (proc) = wp¢(SP™°), where wh
is defined as follows:

wp (skip;) = 0,
wh(q *= U/ (i);) = 0,
wlI;rOC(Sl 82) . wgrOC(Sl) + w{j))rOC(S2)’

: /
if proc ~p proc/,

1
wh °“(call proc’[i](s);) =
P procfi(s):;) {0 otherwise.

and, in the case of branching, we have that

wp*“(if b then S else Sp), and

proc

wp (qcase q of {0 — Sg,1 — Si})

are both defined as max(wd *(Sp), wp °(S1)).
Then, the set PFOQ (polytime FOQ) is the set of WF
programs that satisfy the condition:

Vproc € P, widthp (proc) < 1.

A WF program always terminates, and a program
in PFOQ will terminate in polynomial time. Any ter-
minating program admits an inverse. In the follow-
ing, we denote by [P] the semantics of program P.

Theorem 1. All terminating FOQ programs are re-

versible: if P terminates, we can construct a program
P! such that [P~'] o [P] = Id.

The following theorems state more precisely the
relation PFOQ and FBQP.

Theorem 3 (Soundness). Given a program P €
PFOQ , a function f:{0,1}* — {0,1}*, and a value
pE (%, 1], if f is computed by [P] with probability p
then f € FBQP.

Given a polynomial @ and quantum state |z) let
¢q(|z)) be the function that returns the state |z)
preceded by some extra writing space, linear in @,
used to perform internal computations.

Theorem 6 (Completeness). For every function f
in FBQP with polynomial bound @ € N[X], there is a
PFOQ program P such that [P] o ¢g computes f with
probability %

Our completeness proof is done by showing that
PFOQ is expressive enough to implement the function
algebra in [7]. In particular, we allow for a more gen-
eral recursion scheme.

Our soundness proof is done by showing that,
for any PFOQ program P, there exists a polytime
quantum Turing machine that implements [P]. We
also give a second (and more practical) soundness
proof by describing a polynomial time algorithm
that, given a PFOQ program P and a natural num-
ber n, computes the circuit implementing [P] on an
input of n qubits.

IS

0>

fany
AYZ

AY >

fany
AY >

L 10

fany
AYZ
fany

Figure 4: Example of circuit optimization.

4 Compilation strategy

Given Yao’s equivalence result between uniform fam-
ilies of circuits and polytime quantum Turing ma-
chines [§], the existence of uniform families of cir-
cuits implementing PFOQ programs is not surprising.
However, any practical implementation requires a di-
rect compilation strategy, without an intermediate
quantum Turing machine representation.

Surprisingly, it is not obvious how to directly
generate the circuit for a program while preserv-
ing its polynomial time complexity. If we consider
the statement for quantum branching (gcase), while
the time complexity in the QTM model is the max-
imum of each branch, in the circuit model we are
required to perform them in sequence. This disanal-
ogy between branching in QTMs and circuits, more
recently coined as “branch sequentialization” [9], can
generate an exponential blowup in the size of the fi-
nal circuit.

In this work, we describe a merging technique,
exemplified in Figure {4} that uses ancillas and con-
trolled swap operations to combine equal procedure
calls that occur in different branches. This allows
us to avoid the exponential blowup from branch se-
quentialization in PFOQ programs.

Acknowledgements

Tha authors would like to thank the anonymous re-
viewers for their feedback on this extended abstract.

This work is supported by the Inria associate
team TC(Pro)3v, the Plan France 2030 through
the PEPR integrated project EPiQQ ANR-22-PETQ-
0007, and the HQI initiative ANR-22-PNCQ-0002.

References

1]

Stephen Bellantoni and Stephen Cook. A
new recursion-theoretic characterization of the

polytime functions. computational complexity,
2(2):97-110, Jun 1992.

Ethan Bernstein and Umesh Vazirani. Quantum
complexity theory. SIAM Journal on Computing,
26(5):1411-1473, 1997.

Ugo Dal Lago. A short introduction to implicit
computational complexity. In ESSLLI 2010,
pages 89-109, 2011.

Ugo Dal Lago, Andrea Masini, and Margherita
Zorzi. Quantum implicit computational
complexity. Theoretical Computer Science,
411(2):377-409, 2010.

Romain Péchoux. Implicit computational com-
plexity: past and future. Mémoire d’habilitation
a diriger des recherches, 2020. Université de Lor-
raine.

Peter W. Shor. Algorithms for quantum com-
putation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Founda-
tions of Computer Science, pages 124-134, 1994.

Tomoyuki Yamakami. A schematic definition
of quantum polynomial time computability. J.
Symb. Log., 85(4):1546-1587, 2020.

Andrew Chi-Chih Yao. Quantum circuit com-
plexity. In Proceedings of 1993 IEEE 34th An-
nual Foundations of Computer Science, pages
352-361, 1993.

Charles Yuan and Michael Carbin. Tower: data
structures in quantum superposition. Proceed-
ings of the ACM on Programming Languages,
6(OOPSLA2):259-288, Oct 2022.

	Introduction
	Syntax and example
	Restrictions for polytime
	Compilation strategy

