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Abstract

Graph state verification protocols allow multiple parties to share a graph state while
checking that the state is honestly prepared, even in the presence of malicious parties. Since
graph states are the starting point of numerous quantum protocols, it is crucial to ensure that
graph state verification protocols can safely be composed with other protocols, this property
being known as composable security. Previous works [YDK21] conjectured that such a property
could not be proven within the abstract cryptography framework: we disprove this conjecture
by showing that all graph state verification protocols can be turned into a composably secure
protocol with respect to the natural functionality for graph state preparation. Moreover,
we show that any unchanged graph state verification protocol can also be considered as
composably secure for a slightly different, yet useful, functionality. Finally, we show that
these two results are optimal, in the sense that any such generic result, considering arbitrary
black-box protocols, must either modify the protocol or consider a different functionality.

Along the way, we show a protocol to generalize entanglement swapping to arbitrary
graph states that might be of independent interest. We derive our results using the scalable
ZX-calculus formalism, providing one of the first application of this formalism to cryptography.

Link to full paper: https://arxiv.org/abs/2402.01445

1 Introduction

Quantum networks enhance today’s networks capabilities by providing a higher level of security,
based on the inviolable laws of physics, but also by enabling the emergence of new protocols
impossible to obtain classically. The spectrum of quantum protocols is wide, starting from
quantum teleportation [BBC+93] to delegated and multiparty computation [BFK09, FK17,
DNS12, DGJ+20], anonymous transmission [CW05, UMY+18], copy-protection [Aar09], coin
flipping [Gan09, BCK+20], and more. A large fraction of these protocols, including quantum
teleportation, requires parties to share multipartite entangled quantum states before the beginning
of the protocol. These states are typically Bell pairs, GHZ states, or, more generally, arbitrary
graph states. The task of preparing and securely distributing these states among all parties is
typically achieved using a so-called graph state verification protocol.

Graph state verification protocols should be resilient to deviations from possibly malicious
parties, whether they are controlling the source of quantum states or not. Such security properties
are usually proven in a game-based model, in which we study and prove resilience against specific
malicious strategies. In this model, we can only prove guarantees on the final quantum state,
but we cannot obtain any guarantee on the behavior of the protocol when it is repeated or
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composed with other protocols, or when the adversary is allowed to run attacks in parallel. This
is insufficient for protocols that are used as building blocks, such as graph state verification.

As a consequence, it is often unclear if the security of a protocol using graph states is preserved
when the graph state is obtained via a graph state verification protocol instead of being honestly
generated by a trusted third party. This leads to the natural question:

Is it safe to compose any arbitrary protocol with any arbitrary graph state verification protocol?
Is it still secure if the adversary can run multiple attacks in parallel?

The study of the composition of protocols is typically done in a security framework where
the notion of functionality or resource is introduced in order to abstract the properties of a
given protocol [Can01, Unr10, MR11a, Mau12]. A functionality can be seen as a trusted third
party: a protocol is said to realize a given functionality if it is impossible to distinguish a
run of the protocol from a use of the functionality. With this concept in mind, creating new
protocols from sub-protocols is a breeze: we just need to prove that the protocol is secure when
the sub-protocol is implemented by a functionality, and we are automatically guaranteed that
the protocol will still be secure if we use a sub-protocol realizing this functionality, even if the
adversary is allowed to run attacks in parallel. Composing functionalities is therefore fundamental
when designing protocols, since many more advanced protocols are often obtained by composing
simpler sub-protocols. This use of functionalities as black-boxes with definite input and outputs
increases the reusability of protocols. When using the terminology of these frameworks, the
above questions can be reformulated as follows:

Do composable graph state verification protocols exist?

Previous works were only able to show limited results regarding this question. Notably, [YDK21]
was considering the setting where only the source can be malicious, and conjectured that there
might not exist a single composable state verification protocol.

2 Our results

In this work we refute this conjecture by answering positively to this interrogation, actually
proving that any secure graph state verification protocol is composable. More specifically:

• We present a method to turn any arbitrary graph state verification protocol, secure in the
game-based model, into a composably secure protocol realizing the natural1 functionality
V|G⟩ for graph state verification. This “compilation” only adds one round of classical
communication at the end of the protocol, and mostly preserves the guarantees of the
original protocol. More precisely, if the final state obtained in the real protocol is supposed
to be ε-close to the target graph state for some notion of closeness, then the protocol
ε-realizes V|G⟩. Our results are expressed in the abstract cryptography framework [MR11a].

• We also show that any unchanged graph state verification protocol is also composably
secure for a slightly different, yet useful, functionality Vf

|G⟩. This functionality differs from

V|G⟩ by allowing the adversary to apply a limited set of corrections (characterized by f) on
the qubits owned by the honest parties.

• We show that it is impossible to prove that any arbitrary unchanged protocol realizes V|G⟩
having only black-box access to the protocol, without either changing the protocol, or the
functionality, showing that the above results are optimal.

1More precisely, V|G⟩ distributes the graph state |G⟩ between all parties, giving first this state to malicious
parties. The adversary is only allowed to make the functionality abort before sending the shares of |G⟩ belonging
to the honest parties.
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• As an application, we show that our result can be applied to existing protocols, in particular
we show that [PCW+11] and [UM22] are composably secure.

• Along the way, we show a protocol to generalize entanglement swapping to arbitrary graph
states, which might be of independent interest. Since graph-state manipulation can be
challenging using the usual density matrix formalism, we use scalable ZX-calculus [CK17,
CHP19] to prove our results, asserting the relevance of this language for complex graph
state manipulation, including in the context of quantum cryptography.

3 Quick overview and main techniques

Our result are expressed in the Abstract Cryptography framework (AC) [MR11a], in which we

prove the realisation of an ideal resource Vf
|G⟩ by any concrete graph state verification protocol.

Vf
|G⟩ is a black-box functionality that shares a graph state while allowing dishonest parties to

apply some corrections to it (limited by the function f). We also show how to transform concrete
protocols so that they realise a more natural ideal functionality V|G⟩ simply sharing graph states
to n parties.

To prove the realisation of an ideal functionality in the AC framework, we need to construct
so-called simulators. Along the proof, we find that it is necessary for the simulators to perform a
merging operation that transform two copies of a graph state |G⟩ into one while only accessing a
partition of the qubits from the two copies of |G⟩. If the graph |G⟩ is a simple Bell pair, this
is known as entanglement swapping. Unfortunately, such an operation is not know to exist for
generic graphs.

We can show that it is impossible to find such a map to realise V|G⟩ without breaking non-
signaling, leading to our first impossibility result. Therefore, the simulator must communicate
some corrections to apply to the other part of the graph state, leading to the functionality Vf

|G⟩.

We therefore construct two maps: a correction map ξH , performed by the functionality, and ? ,

performed by the simulator such that:
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where the LHS represents the concrete world and the RHS represents the ideal world. We say

that a state |G⟩ is mergeable if there exist such ξH and ? . Studying the set of mergeable

states is therefore fundamental since being mergeable is a necessary condition for composability.

In the full version of the article, we show that all graph states are mergeable, by providing
a non-trivial construction relying on the rank of the adjacency matrix of the graph state. We
were able to obtain and prove the correctness of this construction using the scalable ZX-
calculus [CHP19], providing one of the first application of this formalism to cryptography. Using
this property, we are then able to prove the composable security of any graph state verification
protocol.

Finally, by relying on some fundamental properties of graph states, we show that these
corrections can instead be applied directly by the simulator instead of the functionality, at the
cost of adding an additional round of communication, where all parties apply a random stabilizer
to their state. By adding this extra round, we can thus transform any graph state verification
protocol into a protocol that realises the natural graph state verification functionality V|G⟩.
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