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1 Extended abstract

Quantum theory is in principle compatible with
processes that violate causal inequalities, an ana-
logue of Bell inequalities that constrain the correla-
tions observed by parties operating in a definite or-
der [1–3]. To date, many examples of causal inequal-
ities that are potentially violated by processes with
indefinite causal order have been found [2, 4–11].
However, in general, the maximum quantum viola-
tions of these inequalities are still unknown even in
the simplest cases, unlike in the case of Bell inequal-
ities such as Clauser-Horne-Shimony-Holt (CHSH)
inequality [12], for which Tsirelson bound provides
the ultimate violation achievable in quantum the-
ory. The lack of exact bounds on the quantum vi-
olation of causal inequalities limits our understand-
ing of indefinite causal order in quantum mechan-
ics. In addition, new questions have recently arisen
from the introduction of a new class of scenarios
where not only the causal order of the experiments,
but also the temporal direction of the information
flow within the local laboratories can be indefinite
[13]. Can these scenarios lead to even larger vio-
lations? And in the affirmative case, where does
the boundary lie between the correlations achievable
with indefinite causal order alone and those achiev-
able when indefinite causal order is combined with
indefinite temporal direction?

Here we answer all the above questions. First, we
develop a general method for bounding the violation
of causal inequalities by quantum processes with in-
definite causal order. We start by showing that the
maximal violation of a special class of causal in-
equalities, termed single-trigger causal inequalities,
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can be determined explicitly. The maximal viola-
tion of single-trigger causal inequalities provides up-
per bounds on the violations of arbitrary causal in-
equalities. Mathematically, these upper bounds can
be seen as an semidefinite programming (SDP) re-
laxation of the original problem of computing the
maximal quantum violation of causal inequalities.

Using this method, we establish the analogue of
Tsirelson bound for paradigmatic examples of causal
inequalities. We show the maximal violation of
the Oreshkov-Costa-Brukner (OCB) inequality [2]
and the inequality associated with Lazy Guess Your
Neighbor’s Input game [5]. In addition, we provide
a non-trivial upper bound of the success probabil-
ity of Guess Your Neighbor’s Input game [5]. Our
results allow for a geometric representation of the
quantum correlations arising from indefinite causal
order. Intriguingly, we find that the geometric rep-
resentation of the OCB correlations coincides with
the representation of the CHSH correlations in the
Bell inequality setting [14].

Then, we show that classical processes with in-
definite causal order and time direction can violate
all causal inequalities to their algebraic maximum.
These processes are the classical version of the quan-
tum processes with indefinite time direction intro-
duced in Ref. [13]. They are in principle compatible
with the validity of classical physics in the labora-
tories of the different parties, but do not assume a
privileged direction of time outside each laboratory.
In particular, we construct a classical process which
allows two parties to perfectly signal to each other.

Our results offer new insights into the structure of
the set of quantum correlations generated by quan-
tum indefinite-causal-order processes, and can be
used as a tool to better understand the operational
implication of indefinite causal order in quantum



theory. An open question is whether our general
bound could be tight for all the other causal in-
equalities. The analogy with Bell inequalities, how-
ever, suggests a negative answer. In Bell scenarios,
a converging sequence of upper bounds on the value
of maximal quantum violations is provided by the
Navascués-Pironio-Aćın SDP hierarchy [15, 16]. The
analogy with this situation suggests that our SDP
relaxation may be just the first level of a a similar
hierarchy of SDPs. Determining whether this anal-
ogy is correct, and, in the affirmative case, identi-
fying the other levels of the hierarchy are among
the most important research directions opened by
our work. Another interesting direction is to extend
our method for the calculation of the ICO bound
to other type of inequalities with non-trivial causal
structure, such as the inequalities recently studied
in Refs. [17, 18]. Another interesting direction of
future research is to establish self-testing results for
causal inequalities, in analogy to the self-testing re-
sults in Bell scenarios [19, 20]. Such a self-testing re-
sult may have cryptographic implications, in a simi-
lar way as it was observed in the setting of Bell cor-
relations. While the physical realization of the OCB
process is still an open problem, these implications
would provide important foundational insights into
the operational understanding of indefinite causal
order in quantum theory. Finally, our results open
up a search for physical principles capable of ex-
plaining why the violation of causal inequalities by
ICO quantum processes is not equal, in general, to
the algebraic maximum, and, of determining the ex-
act value of the quantum violation. In the context
of Bell inequalities, the analogue question was orig-
inally raised by Popescu and Rohrlich [21], and led
to the discovery of new information theoretic princi-
ples, such as non-trivial communication complexity
[22–24], non-trivial nonlocal computation [25], in-
formation causality [26], macroscopic locality [27],
and local orthogonality [28].

2 Technical version of the work

Our paper is available on arXiv
(https://arxiv.org/abs/2403.02749).

References

[1] G. Chiribella, G. D’Ariano, P. Perinotti, and
B. Valiron, “Beyond quantum computers,”
arXiv preprint arXiv:0912.0195, 2009.

[2] O. Oreshkov, F. Costa, and Č. Brukner, “Quan-
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convergent hierarchy of semidefinite programs
characterizing the set of quantum correla-
tions,” New Journal of Physics, vol. 10, no. 7,
p. 073013, 2008.

[17] S. Gogioso and N. Pinzani, “The geometry
of causality,” arXiv preprint arXiv:2303.09017,
2023.

[18] T. van der Lugt, J. Barrett, and G. Chiribella,
“Device-independent certification of indefinite
causal order in the quantum switch,” Nature
Communications, vol. 14, no. 1, p. 5811, 2023.

[19] D. Mayers and A. Yao, “Quantum cryptog-
raphy with imperfect apparatus,” in Proceed-
ings 39th Annual Symposium on Foundations
of Computer Science (Cat. No. 98CB36280),
pp. 503–509, IEEE, 1998.

[20] D. Mayers and A. Yao, “Self testing quantum
apparatus,” Quantum Info. Comput., vol. 4,
p. 273–286, jul 2004.

[21] S. Popescu and D. Rohrlich, “Quantum non-
locality as an axiom,” Foundations of Physics,
vol. 24, pp. 379–385, 1994.

[22] W. Van Dam, Nonlocality and communication
complexity. PhD thesis, University of Oxford,
1999.

[23] G. Brassard, H. Buhrman, N. Linden, A. A.
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