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Recent years have seen a flourishing development of quantum technologies for computer science, in
the form of quantum computation and quantum communication. Both of them exploit quantum phenomena
like superposition and entanglement: the former is interested in harvesting the (supposedly) higher compu-
tational power of quantum computers, while the latter strives to achieve secure and reliable communication,
featuring solutions for key distribution [22], cryptographic coin tossing [1], direct communication [20],
and private information retrieval [10]. Protocols like BB84 QKD [1] are unconditionally secure [21],
meaning that they are protected against all physically possible attackers. Quantum communication also
promises to allow linking multiple computers via the Quantum Internet [2, 26], therefore providing
quantum algorithms with large enough memories for practical applications.

Despite the rich theory and the potential applications, there is no accepted standard to model and verify
quantum concurrent systems and protocols. Numerous works [18, 11, 8, 25, 3] rely on quantum process
calculi, an algebraic formalism that has been successfully applied to classical protocols and concurrent
systems. Their semantics is given by means of a labelled transition system (LTS) (S,Act,→): the relation
→ ⊆ S×Act × S specifies how a classical state s ∈ S (representing a process) may evolve performing
an action α ∈ Act. The standard equivalence for such LTSs is bisimilarity: we say that two states are
bisimilar when they express the same visible attributes, and after one step they evolve in bisimilar states.
Crucially, bisimilarity allows us to abstract away from the implementation details of two systems, and
focus only on the observable, interactive behaviour they offer to an external environment.

There have been several attempts [17, 4, 6, 5, 3] to adapt existing techniques to the quantum setting,
mainly in terms of probabilistic LTSs (pLTSs) (Con f ,Act,→): Con f = S×H is a set of configurations
composed by a classical state s ∈ S and a quantum state |ψ⟩ ∈ H , and → ⊆ Con f ×Act ×D(Con f )
with D(Con f ) probability distributions of configurations. This approach led to a plethora of different
bisimilarities, yet most of them are unsatisfactory since they spuriously distinguish processes that are
deemed indistinguishable by the prescriptions of quantum theory [4, 16, 9]. Moreover, assessing bisimilar-
ity of processes requires comparing infinitely many LTSs (one for each possible quantum state). Indeed,
algorithmic verification is still missing. In [3], the root of these problems is identified in the peculiarities
of the semantic model described above, a non-deterministic pLTS made of quantum states and processes.

We introduce a novel semantic model for non-deterministic quantum protocols, exploiting effect
distributions and effect transition systems. Effects are the simplest kind of measurements, i.e. yes-no tests
over quantum systems defined as Efd = {E ∈Cd×d | 0d ⊑ E ⊑ Id }, where d is the dimension of H , Id is
the identity matrix and ⊑ is the Löwner order (A ⊑ B whenever B−A is positive). We introduce effect
distributions, i.e. functions associating each element of a given set X with some d-dimensional effect.
Definition 1. Given a set X, the set of d-dimensional finite effect (sub)distributions over X is

QdX = {D ∈ Efd
X | supp(D) is finite, ∑x∈supp(D)

D(x)⊑ Id}
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where supp(D) is the set {x ∈ X |D(x) ̸= 0d }.

Effect distributions are finite non-normalized POVMs [12] and they generalize probability distributions:
Q1X coincides with the usual set of (sub-)probability distributions DX .

In general, effects can be regarded as functions from density operators to probabilities, thus an effect
distribution D ∈ QdX denotes a function D↓_∈ (DX)DMd associating any ρ ∈ DMd with the probability
distribution D↓ρ such that D↓ρ (x) = tr(D(x) ·ρ) for any x ∈ X .

Theorem 1. Effect distributions correspond to all and only the parameterized sub-probability distributions
that are convex and have an “overall” finite support.

Qd ∼=
{
D↓_∈ (D(X))DMd

∣∣ D↓ρ ⊕p σ = (D↓ρ) ⊕p (D↓σ ), and
⋃

ρ∈DMd
supp(D↓ρ) is finite

}
As for probability distributions, we compose multiple effect distributions in an effect-weighted sum,

writing ∑i∈I Ei ⊗Di for a distribution such that (∑i∈I Ei ⊗Di)(x) = ∑i∈I Ei ⊗Di(x), when ∑i Ei ⊑ I.
Intuitively, D measures a portion of the quantum state to choose between the distributions Di, which in
turn behave accordingly to the remaining quantum state.

One could be tempted to use the binary composition ∆ ⊕E Θ, defined as E ⊗∆+(I−E)⊗Θ, as it is
common in the probabilistic case. We show that this is not a safe simplification for finite effect distributions,
as some (finite support) effect distributions cannot be defined using the binary operator only. Roughly, the
proof is based on the fact that some effects cannot be decomposed as the tensor product of smaller effects,
like for D such that D(x1) = |Φ+⟩⟨Φ+| , D(x2) = |Φ−⟩⟨Φ−| , D(x3) = |Ψ+⟩⟨Ψ+| , D(x4) = |Ψ−⟩⟨Ψ−| .

To model quantum systems and protocols we introduce effect labelled transition systems (eLTSs).

Definition 2. An eLTS of dimension d is a triple (S,Act,→) where S is a set of states, Act is a set of
labels, and →⊆ S×Act ×QdS is the transition relation. As usual, we write s

µ−→D for (s,µ,D) ∈→.

We instantiate two distinct definitions of semantic equivalence on quantum systems: Aczel-Mendler
and Larsen-Skou bisimilarities [24]. Roughly, the first requires bisimilar distributions to assign the same
weight to bisimilar states, while the latter compares the combined weights of equivalence classes of
bisimilar states. They are known to coincide on classical probabilistic processes [14]. Notably, they do
not in the quantum case.

Definition 3. AM-bisimilarity ∼am is the largest symmetric relation R ⊆ S×S such that for any sR t

if s
µ−→D then t

µ−→ T for some T such that D
□

R T

where
□

R is the smallest relation between effect distributions such that s R t implies {(s,1)}
□

R {(t,1)},

and Di
□

R Ti implies (∑i∈I Ei ⊗Di)
□

R (∑i∈I Ei ⊗Ti).

Example 1. Consider an eLTSs having the following transitions (only):

s1
α−→ {(s4, |0⟩⟨0|),(s5, |1⟩⟨1|)} s2

α−→ {(s4,I)} s3
α−→ {(s4, |+⟩⟨+|),(s5, |−⟩⟨−|)}

We have that s1 ∼am s2 and s2 ∼am s3. Indeed, |0⟩⟨0|+ |1⟩⟨1| = I = |+⟩⟨+|+ |−⟩⟨−|. Nonetheless,
s1≁ams3.

This example, inspired by [23], proves that ∼am is not transitive. We thus generalize Larsen-Skou
bisimilarity [19] to the quantum case (named kernel bisimilarity in [24]).
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s1
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s1 + s2
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EXTL
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s1 ∥ s2
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s1

µ−→D s2
µ−→ T

s1 ∥ s2
τ−→D ∥ T

SYNCH
s

µ−→D

s|
ρ

µ−→D|
ρ

QINST

Figure 1: Operators on eLTSs (right rules omitted).

Definition 4. Let LS-bisimilarity ∼ls be the largest equivalence relation R ⊆ S×S such that for any sRt

if s
µ−→D then t

µ−→ T for some T such that ∀C ∈ S/R ∑
x∈C

D(x) = ∑
x∈C

T(x)

with S/R the equivalence classes of S.

We show that ∼ls correctly equates s1, s3 of Example 1, as both D and T associate the equivalence
class {s4,s5} with the effect I. Moreover, LS-bisimilarity is coarser than AM-bisimilarity.

Note that we can instantiate any effect distribution with a density operator ρ obtaining a probability
distribution. Therefore, we can compute the pLTS characterizing the probabilistic behaviour of an eLTS
in a given state ρ . We write s ∼ρ t if s and t are probabilistic bisimilar in the pLTS obtained with ρ . Since
probabilistic behaviour is the only observable property of quantum systems, we consider probabilistic
behavioural equivalence (≃pbe=

⋂
ρ ∼ρ ) as the ground truth our bisimilarity must comply with.

Theorem 2. In any eLTS, ∼ls ⊆ ≃pbe. Moreover, if the eLTS is finite, then ≃pbe ⊆ ∼ls.

We lift the operators commonly considered for probabilistic systems to the case of eLTSs, namely
non-deterministic sum and parallel composition, and we propose a new operator tailored for the quantum
case, the quantum partial instantiation. We let E|

ρ
= trA(E(ρ ⊗ IB)) with ρ in HA and E in HA ⊗HB:

roughly, E|
ρ

is obtained by partially evaluating E over the input provided by ρ . In Figure 1, we define such
operators, where we write (D ∥ T) and D|

ρ
for the distributions associating s1 ∥ s2 with D(s1)⊗T(s2),

and s′|
ρ

with D(s′)|
ρ

respectively. We prove that ∼ls is closed under all the operations above.
We then explore operations over effect distributions and present a pair of no-go theorems distinguishing

the quantum case from the probabilistic one. First, we notice that the lack of expressivity of ⊕ is not
only syntactical: it is possible with n-ary composition to define eLTSs for which no bisimilar state can
be defined using the binary operator ⊕ only. Then, we consider non-deterministic composition of effect
distributions. An effect distribution D+T such that (D+T)↓ρ (s1 + s2) = D↓ρ (s1) ·T↓ρ (s2) does
not always exist, preventing us from lifting the usual notion of non-deterministic sum of probability
distributions [14] to effect distributions. In particular, D+T never exists if the dimension of the Hilbert
space is two or greater and D(s) = |ψ⟩⟨ψ| and T(t) = |φ⟩⟨φ | for some states s, t ∈ S and quantum states
|ψ⟩ and |φ⟩.

To assess our proposal, we define a minimal quantum process algebra (mQPA) featuring actions,
synchronization, non-determinism, parallel composition, destructive measurements and unitary trans-
formations, and we enrich it with two different semantics: a stateful Schrödinger-style semantics that
given a quantum state as input returns a pLTS representing the observable behaviour of the system; and a
Heisenberg-style semantics in the form of an eLTS that is independent of the actual quantum input, in
the style of [13, 7]. We prove that the Heisenberg-style eLTS is indeed the “symbolic” version of the
Schrödinger-style pLTSs of the same system. In a nutshell, this means that we can prove bisimilarity just
once on the Heisenberg semantics, and have it automatically verified for all the possible “ground” systems
obtained by instantiating the quantum input. Notably, our notion of bisimilarity can be efficiently verified
with standard techniques [15].
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