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1 THE LOGIC OF QUANTUM PHYSICS
The logic of quantum physics is a topic that has been puzzling
researchers for a long time. Starting from the seminal work by
Birkhoff and von Neumann in the 30s [7], there have been many
developments, with more or less success, to depict a logic that suits
some odd behaviour seen in these theories. With the rise of quan-
tum computing as a way to study and understand physics, many
techniques from computer science have been used to solve physical
problems. In particular, it is well-known that there is a correspon-
dence between different type of logics, programming languages,
and category theory: the Curry-Howard-Lambek correspondence
(see, for example, [32, 41]). Therefore, in the quest for a quantum
logic, this well-known technique can play a central role.

In the 2000s and early 2010s, the mainstream research on quan-
tum programming languages centred from a practical perspective:
the goal was to define programming languages to be able to pro-
gram a quantum computer. With this aim, theoretical developments
such as the “quantum lambda calculus” [40] have been pioneers.
Many practical languages followed: Quipper [28] and QWIRE [35]
are high-level functional languages based on the quantum lambda
calculus, but also languages such as IBM’s Qiskit [29] or Microsoft’s
Q# [42] are based on the same ideas. What these languages have
in common is the paradigm so-called “quantum data, classical con-
trol” [39]. This paradigm is based on the original idea of architecture
of Knill’s QRAM [30]. In this scenario, a quantum computer is a
device attached to a classical computer, which instructs the first one
on what operations to do, over which registers, etc. The control flux
of the program is purely classical, running on a classical computer.
However, its connection to logic is an interesting one. Since quan-
tum data cannot be copied, a classical computer cannot instruct a
quantum computer to do whatever a classical computer can, such
as copying data. This leads the aforementioned developments to
the necessity of using Linear Logic-based type systems [26]. Al-
though it gives a glance of what a quantum logic may look like,
these developments are not attempting at defining a logic, but a
programming language for the practical quantum computer.

In the quest for a quantum logic founded by computer science
and the Curry-Howard-Lambek correspondence, there has been a
long path in the paradigm of “quantum data and control” [2, 4, 5,
14, 17, 18, 21, 43]. This paradigm differs from the classical control
in that the control flow of programs can follow a quantum particle,
so, programs can be superposed, measured, etc. This idea, which
seems radical, is basic in quantum computing: the Controlled-NOT
(or CNOT) operation, for example, controls whether to apply a
NOT operation based on a control qubit. There are more evolved
examples such as the Quantum Switch [36, 37], which based on
a control qubit can apply two operations in one order or another.
Any connection between cut-elimination in Natural Deduction and
quantum programs would require the use of quantum control if we
wish to see some of these properties reflected. Indeed, in classical

control, the qubits are part of the data in the quantum computer
and not part of the control in the classical one. Thus, we claim that
to define a quantum Curry-Howard-Lambek isomorphism, we need
to consider control to be quantum.

If we want to start with an extension of the lambda calculus,
we have to ensure that only linear functions are considered. One
way to do so is to enforce linearity by definition. In this approach,
𝑓 (𝑢 + 𝑣) is, by definition, 𝑓 (𝑢) + 𝑓 (𝑣) and 𝑓 (𝑎.𝑢) is, by definition,
𝑎.𝑓 (𝑢). Such has been the approach of the linear-algebraic lambda
calculus [5], where a “call-by-base” strategy is defined, meaning
that 𝑓 (𝑢 + 𝑣) reduces to 𝑓 (𝑢) + 𝑓 (𝑣) and 𝑓 (𝑎.𝑢) reduces to 𝑎.𝑓 (𝑢).
Another option, which we follow here since we are most interested
in logic, is to enforce linearity with Linear Logic.

2 LINEAR LOGIC AND ITS LINEARITY
Linear Logic [26] is called “linear” since its models are linear in
the algebraic sense: the mappings between two propositions are
modelled by linear maps. However, within the proof languages of
linear logic, this linearity is usually not expressible in its syntax.
Indeed, the properties 𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣) and 𝑓 (𝑎.𝑢) = 𝑎.𝑓 (𝑢)
would require a syntactic sum and scalar multiplication.

This mismatch has been addressed by the LS-calculus [16], a
proof language for intuitionistic multiplicative additive linear logic
(IMALL). On this calculus, two proof-terms of a proposition 𝐴 can
be added to generate a new proof-term of 𝐴, and a proof-term of a
proposition 𝐴 can be multiplied by a scalar from the semiring S,
giving a new proof-term of 𝐴. That is, the following trivially valid
interstitial rules are considered

Γ ⊢ 𝐴 Γ ⊢ 𝐴
Γ ⊢ 𝐴 sum Γ ⊢ 𝐴

Γ ⊢ 𝐴 prod(𝑠)

with proof-terms 𝑡 + 𝑢 for the first, and 𝑠 • 𝑡 for the second, where
𝑡 and 𝑢 are proof-terms of 𝐴 and 𝑠 is a scalar in the given field S.

Adding these rules permits building proofs that cannot be re-
duced because the introduction rule of some connective and its
elimination rule are separated by an interstitial rule. For example,

𝜋1
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ⊕ 𝐵
⊕-i1

𝜋2
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ⊕ 𝐵
⊕-i1

Γ ⊢ 𝐴 ⊕ 𝐵
sum 𝜋3

Γ, 𝐴 ⊢ 𝐶
𝜋4

Γ, 𝐵 ⊢ 𝐶
Γ ⊢ 𝐶 ⊕-e

Reducing such a proof, sometimes called a commuting cut, requires
reduction rules to commute the rule sum either with the elimination
rule below or with the introduction rules above.

The commutation with the introduction rules above is not always
possible, for example in the proof

𝜋1
Δ1 ⊢ 𝐴

𝜋2
Δ2 ⊢ 𝐵

Γ ⊢ 𝐴 ⊗ 𝐵
⊗-i

𝜋3
Δ3 ⊢ 𝐴

𝜋4
Δ4 ⊢ 𝐵

Γ ⊢ 𝐴 ⊗ 𝐵
⊗-i

Γ ⊢ 𝐴 ⊗ 𝐵
sum
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where Δ1,Δ2 = Γ = Δ3,Δ4, it is not. Thus, in these cases the
commutation with the elimination rule below is preferred. In the
LS-calculus, the commutation of the interstitial rules with the
introduction rules is chosen, rather than with the elimination rules,
whenever it is possible, that is for all connectives except the dis-
junction and the multiplicative conjunction. For example, the proof

𝜋1
Γ ⊢ 𝐴

𝜋2
Γ ⊢ 𝐵

Γ ⊢ 𝐴 & 𝐵
&-i

𝜋3
Γ ⊢ 𝐴

𝜋4
Γ ⊢ 𝐵

Γ ⊢ 𝐴 & 𝐵
&-i

Γ ⊢ 𝐴 & 𝐵
sum

reduces to
𝜋1

Γ ⊢ 𝐴
𝜋3

Γ ⊢ 𝐴
Γ ⊢ 𝐴 sum

𝜋2
Γ ⊢ 𝐵

𝜋4
Γ ⊢ 𝐵

Γ ⊢ 𝐵 sum

Γ ⊢ 𝐴 & 𝐵
&-i

Such a choice of commutation yields a stronger introduction
property for the considered connective.

The proof-terms considering sums and scalar multiplication are
reminiscent of other calculi used in similar ways for quantum com-
puting and algebraic lambda-calculi [2–6, 17–22, 40, 44, 45].

In the same way as the rule prod(𝑠) expresses a family of rules
(one for each 𝑠 ∈ S), there are also as many proofs of 1 as elements
in S. So, we write 𝑠 .★, instead of just★, the valid proofs of 1. Hence,
1 can be naturally interpreted as S, and the proofs 𝑣 of 1𝑛 =

∧𝑛
𝑖=1 1

(for any parentheses) are in one-to-one correspondence with the
elements 𝑣 of S𝑛 .

In the LS-calculus, any closed proof 𝑡 of the proposition 1𝑛 ⊸
1𝑚 can be proved to be linear in the syntactic sense. That is, if𝑢 and
𝑣 are proofs of 1𝑛 , then 𝑡 (𝑢 + 𝑣) is computationally equivalent to
𝑡𝑢+𝑡𝑣 and 𝑡 (𝑠 •𝑢) is computationally equivalent to 𝑠 •𝑡𝑢. Moreover,
any linear map 𝑓 : S𝑛 −→ S𝑚 has a representation in a proof-term
⊢ 𝑓 : 1𝑛 ⊸ 1𝑚 such that for all 𝑣 ∈ S𝑛 we have that the proof-term
𝑓 (𝑣) is equivalent to the proof-term 𝑓 𝑣 (that is, the application of
𝑓 to 𝑣). This makes the calculus suitable to express matrices and
vectors naturally, and thus, measurement-free quantum programs.

In [23] we give a categorical semantics for the LS-calculus in a
symmetric monoidal closed category with a monomorphism from
the field of scalars (in fact, a semiring is enough for the calculus) to
the semiring Hom(𝐼 , 𝐼 ). While linear logic has been pointed out as
the logic of quantum computing, due to the no-cloning theorem, it
is not enough to express all the possible quantum operations. For
example, the quantum measurement is not a linear operation.

3 NON-DETERMINISM AS A LOGICAL
CONNECTIVE

In [15] it is introduced a new connective to Natural Deduction, ⊙
(read “sup” for superposition), to express the superposition of data
and the measurement operation. This new connective arises from
the following observation. A superposition behaves as a conjunc-
tion, where both propositions are true (and so, its proof is the pair
of proofs), but also, when measured, it behaves as a disjunction,
where only one proposition will be recovered in a non-deterministic
process. The ⊙-calculus contains, other than the sup connective,
sums and scalar product, which allows encoding a basic quantum

lambda calculus. This calculus shows that superposition and mea-
surement can be represented as this new connective. In that paper,
the question of no-cloning (already solved using linear logic), or
unitarity of maps (already solved using some definition of orthogo-
nality well-formedness rules [2, 18, 21]) have been left apart. In [16]
we also show how to combine the ⊙ connective with linear logic.

In [23] we focus on modelling this non-deterministic connec-
tive ⊙ in the linear logic setting, however, we transformed into a
probabilistic connective instead: We defined the L⊙Sp-calculus,
a probabilistic variant of the LS-calculus, extended with the ⊙
connective.

The L⊙Sp-calculus differentiates itself from other approaches
to non-deterministic and probabilistic calculus [8, 9, 12, 13], where
the probabilities arise from terms like 𝑡 ⊕𝑝 𝑢 with 𝑡 and 𝑢 of
the same type. In contrast, our approach introduces probabilities
through a probabilistic pair destructor: fst and snd serve as de-
terministic pair destructors, while 𝛿pq⊙ is probabilistic. This way,
𝛿
pq
⊙ (⟨𝑡1, 𝑡2⟩, 𝑥 .𝑠1, 𝑦.𝑠2) can reduce to either (𝑡1/𝑥)𝑠1 or (𝑡2/𝑥)𝑠2 with
probabilities p and q respectively. As a consequence, the probabilis-
tic behaviour is an explicit elimination and is not triggered from an
introduction term. It also allows for a probabilistic choice among
elements of different types. In [15, 16] it is also shown how to
transform this connective into a measurement-like operation.

The model is also suitable for a (generalised) probabilistic cal-
culus, in the sense that instead of considering positive real scalars
adding to one, we consider the elements of a set of weights, which
are pairs (𝑝, 𝑞) ∈ Hom(𝐼 , 𝐼 ) × Hom(𝐼 , 𝐼 ) such that 𝑝 + 𝑞 = id𝐼 . In
the particular case of the category being that of semirings, with
Hom(𝐼 , 𝐼 ) = R≥0, it is instantiated in a proper probabilistic calculus.

A summary of the different calculi mentioned in this extended
abstract can be found in Table 1.

4 MODELLING PROBABILITIES
Introducing a non-deterministic (or a generalised probabilistic)
operator to a linear language is not straightforward, since adapting
the Powerset Monad, typically used to express non-deterministic
effects [33], is not easily applicable in every scenario. Our aim
was to use the a monoidal category, as it is common in Linear
Logic. To this introduction more intuitive, consider the concrete
category SMS of semimodules over the commutative semiring
S, which is one of the concrete examples in [23]. The arrows in
SMS are defined as the S-homomorphisms, which is a challenge.
The challenge arises from the fact that the mapping, which takes
the two non-deterministic outputs of a computation and returns
the set containing both, is not linear. Indeed, the mapping can be
represented as 𝜈 : 𝐴 ×𝐴 −→ P𝐴, where 𝜈 (𝑎1, 𝑎2) = {𝑎1, 𝑎2}. It can
be easily verified that 𝜈 ((𝑎1, 𝑎2) +

𝐴
(𝑎′1, 𝑎

′
2)) = {𝑎1 +

𝐴
𝑎′1, 𝑎2 +

𝐴
𝑎′2}

while 𝜈 (𝑎1, 𝑎2) +
𝐴
𝜈 (𝑎′1, 𝑎

′
2) = {𝑎1 +

𝐴
𝑎′1, 𝑎1 +

𝐴
𝑎′2, 𝑎2 +

𝐴
𝑎′1, 𝑎2 +

𝐴
𝑎′2}.

Another option to consider would be using lists instead of sub-
sets, because the sum of lists is pointwise, much like the sum of
pairs, which would address the issue. However, the pointwise sum
of lists does not capture our conception of what a non-deterministic
process should entail. To illustrate, suppose we have a program 𝑡

that non-deterministically produces the numerical results 𝑛1 and
𝑛2, and another program 𝑢 that non-deterministically yields 𝑚1
and𝑚2. If sum represents a program that takes two arguments and
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Calculus Reference Propositional logic Linear Logic Sup connective Non-determinism vs weights
⊙S-calculus [15] ✓ ✓ Non-determinism
LS-calculus [16, 23] ✓ None
L⊙S-calculus [16] ✓ ✓ Non-determinism
L⊙Sp-calculus [23] ✓ ✓ Probabilities

Table 1: Calculi.

performs addition, we would anticipate that the potential outcomes
of sum(𝑡,𝑢) encompass 𝑛1 +𝑚1, 𝑛1 +𝑚2, 𝑛2 +𝑚1, and 𝑛2 +𝑚2,
rather than solely 𝑛1 +𝑚1 and 𝑛2 +𝑚2.

Our approach was instead inspired by the density matrix formal-
ism (see, for example, [34, Section 2.4]), wherein we consider the
linear combination of results as a representation of a probability
distribution. In the particular case of a non-deterministic context
instead of the probabilistic one, the temptation might be to use
𝑡 +

𝐴
𝑢 to represent the non-deterministic outcomes 𝑡 and 𝑢. Given

that SMS has a biproduct, we can consider the following diagram,
involving the diagonal Δ = ⟨id, id⟩ and the codiagonal ∇ = [id, id].

𝐴

𝐴 𝐴 ⊕ 𝐴 𝐴

𝐴

Δ
idid

𝑖1

id

𝜋1 𝜋2

∇
id

𝑖2

This way, instead of using 𝜈 : 𝐴 ×𝐴 −→ P𝐴 to aggregate the two
results of a non-deterministic process, we can employ ∇ : 𝐴×𝐴 −→
𝐴, defined as ∇(𝑎1, 𝑎2) = 𝑎1 +

𝐴
𝑎2. However, this alternative gives

rise to another problem. Consider a scenario where we have a
program 𝑡 returning 𝑡1 or 𝑡2 of type 𝐴 non-deterministically, and
another program 𝑢 returning deterministically 𝑣 of type 𝐵. We
would expect that (𝑡,𝑢) returns both (𝑡1, 𝑣) and (𝑡2, 𝑣). Using ∇, it
is (𝑡1, 𝑣) +𝐴×𝐵 (𝑡2, 𝑣) = (𝑡1 +

𝐴
𝑡2, 𝑣 +

𝐵
𝑣). Nonetheless, if we first reduce

𝑡 , we would obtain (𝑡1 +
𝐴
𝑡2, 𝑢) and then (𝑡1 +

𝐴
𝑡2, 𝑣), which is not

equivalent to (𝑡1 +
𝐴
𝑡2, 𝑣 +

𝐵
𝑣).

In fact, the approach inspired by density matrices would only
work in the presence of probabilities. If, instead of reducing non-
deterministically to 𝑡1 and 𝑡2, we have a probability 𝑝 of yield-
ing 𝑡1 and a probability of 𝑞 for 𝑡2, with 𝑝 + 𝑞 = 1, considering
∇𝑝𝑞 (𝑎1, 𝑎2) = 𝑝 •

𝐴
𝑎1 +

𝐴
𝑞 •

𝐴
𝑎2, then the process (𝑡,𝑢) would re-

turn, employing ∇𝑝𝑞 , 𝑝 •
𝐴×𝐵 (𝑡1, 𝑣) +

𝐴×𝐵 𝑞 •
𝐴×𝐵 (𝑡2, 𝑣) = (𝑝 •

𝐴
𝑡1 +

𝐴

𝑞 •
𝐴
𝑡2, 𝑝 •𝐵 𝑣 +

𝐵
𝑞 •

𝐵
𝑣) = (𝑝 •

𝐴
𝑡1 +

𝐴
𝑞 •

𝐴
𝑡2, 𝑣) thus solving the issue.

Therefore, let 𝑝 be the mapping that multiplies its argument by
𝑝 . We can consider ∇𝑝𝑞 to be defined as [𝑝, 𝑞]. Similarly, we could
define Δ𝑝𝑞 = ⟨𝑝, 𝑞⟩, resulting in the following diagram.

𝐴

𝐴 𝐴 ⊕ 𝐴 𝐴

𝐴

Δ𝑝𝑞
𝑞𝑝

𝑖1

𝑝

𝜋1 𝜋2

∇𝑝𝑞
𝑞

𝑖2

This is the approach we used. Each probabilities process in the
L⊙Sp-calculus have a pair (𝑝, 𝑞) associated, from the set adding

to 1, or, more generically, the set {(𝑝, 𝑞) | (𝑝, 𝑞) ∈ Hom(𝐼 , 𝐼 ) ×
Hom(𝐼 , 𝐼 ), 𝑝 + 𝑞 = id𝐼 }. Thus, the category used, for any fixed
semiring S used by the language, is a symmetric monoidal closed
category with biproduct where there exists a monomorphism from
the S to the semiring Hom(𝐼 , 𝐼 ). In the particular case of S = R≥0,
the calculus is a probabilistic calculus.

Some related works
The probabilistic choice in linear logic has been studied in many
settings.

Compact closed categories. In [1], the authors proposed a cate-
gorical semantics of quantum protocols using symmetric monoidal
closed categories with biproducts, which are also compact. The
compactness property provides a notion of dagger, which gives
a natural definition of measurements in terms of the Born rule in
quantum mechanics. Thus, the main difference between our presen-
tation for a model of IMALL+⊙ and their presentation for a model
of quantum protocols is their reliance on a dagger operator and
their use of the compactness property for this purpose. Some prop-
erties in our presentation would be significantly easier to prove if
the category were compact closed (see [23, Remark 3.15]). However,
assuming compactness would limit the generality of the results.

Probabilistic coherent spaces. In [11], based on an idea from Gi-
rard [27], the authors proposed a model of linear logic using proba-
bilistic coherence spaces, interpreting types through continuous do-
mains. Morphisms in the associated category are Scott-continuous.
Additionally, they provide a probabilistic interpretation of terms,
extending PCF with a probabilistic choice construction which se-
lects a natural number from a probability distribution. They show
the denotational semantics of closed terms in their base type as
sub-probability distributions.

Cones. In [38], the author employed the concept of normed cones
to provide an interpretation for the probabilities inherent in quan-
tum programming. An abstract cone is analogous to an R-vector
space, except that scalars are drawn from the set of non-negative
real numbers. This idea has been further developed in [24], and
then proved to be a model of intuitionistic linear logic in [25]. In
addition, it is proved [10] that this model is a conservative extension
of the probabilistic coherent spaces.

Weighted relational models. In [31], the authors proposed amodel
of PCFR—that is, PCF with a probabilistic choice operator—based
on the category of weighted relations. The first main difference with
our approach is that they have a probabilistic choice operator, while
we have a probabilistic pair destructor, as mentioned in the previous
sections. The second difference is that they use a concrete model
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in the category of matrices over a continuous semiring, while we
use an abstract categorical model. They also consider a fixed-point
operator, which is outside the scope of our work.
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