
From linear logic to quantum control
Alejandro Díaz-Caro
UNQ, UBA, and CONICET
Buenos Aires, Argentina

Gilles Dowek
Inria and ENS Paris-Saclay

Saclay, France

Octavio Malherbe
Universidad de la República

Montevideo, Uruguay

1 THE LOGIC OF QUANTUM PHYSICS
The logic of quantum physics is a topic that has been puzzling
researchers for a long time. Starting from the seminal work by
Birkhoff and von Neumann in the 30s [7], there have been many
developments, with more or less success, to depict a logic that suits
some odd behaviour seen in these theories. With the rise of quan-
tum computing as a way to study and understand physics, many
techniques from computer science have been used to solve physical
problems. In particular, it is well-known that there is a correspon-
dence between different type of logics, programming languages,
and category theory: the Curry-Howard-Lambek correspondence
(see, for example, [32, 41]). Therefore, in the quest for a quantum
logic, this well-known technique can play a central role.

In the 2000s and early 2010s, the mainstream research on quan-
tum programming languages centred from a practical perspective:
the goal was to define programming languages to be able to pro-
gram a quantum computer. With this aim, theoretical developments
such as the “quantum lambda calculus” [40] have been pioneers.
Many practical languages followed: Quipper [28] and QWIRE [35]
are high-level functional languages based on the quantum lambda
calculus, but also languages such as IBM’s Qiskit [29] or Microsoft’s
Q# [42] are based on the same ideas. What these languages have
in common is the paradigm so-called “quantum data, classical con-
trol” [39]. This paradigm is based on the original idea of architecture
of Knill’s QRAM [30]. In this scenario, a quantum computer is a
device attached to a classical computer, which instructs the first one
on what operations to do, over which registers, etc. The control flux
of the program is purely classical, running on a classical computer.
However, its connection to logic is an interesting one. Since quan-
tum data cannot be copied, a classical computer cannot instruct a
quantum computer to do whatever a classical computer can, such
as copying data. This leads the aforementioned developments to
the necessity of using Linear Logic-based type systems [26]. Al-
though it gives a glance of what a quantum logic may look like,
these developments are not attempting at defining a logic, but a
programming language for the practical quantum computer.

In the quest for a quantum logic founded by computer science
and the Curry-Howard-Lambek correspondence, there has been a
long path in the paradigm of “quantum data and control” [2, 4, 5,
14, 17, 18, 21, 43]. This paradigm differs from the classical control
in that the control flow of programs can follow a quantum particle,
so, programs can be superposed, measured, etc. This idea, which
seems radical, is basic in quantum computing: the Controlled-NOT
(or CNOT) operation, for example, controls whether to apply a
NOT operation based on a control qubit. There are more evolved
examples such as the Quantum Switch [36, 37], which based on
a control qubit can apply two operations in one order or another.
Any connection between cut-elimination in Natural Deduction and
quantum programs would require the use of quantum control if we
wish to see some of these properties reflected. Indeed, in classical

control, the qubits are part of the data in the quantum computer
and not part of the control in the classical one. Thus, we claim that
to define a quantum Curry-Howard-Lambek isomorphism, we need
to consider control to be quantum.

If we want to start with an extension of the lambda calculus,
we have to ensure that only linear functions are considered. One
way to do so is to enforce linearity by definition. In this approach,
𝑓 (𝑢 + 𝑣) is, by definition, 𝑓 (𝑢) + 𝑓 (𝑣) and 𝑓 (𝑎.𝑢) is, by definition,
𝑎.𝑓 (𝑢). Such has been the approach of the linear-algebraic lambda
calculus [5], where a “call-by-base” strategy is defined, meaning
that 𝑓 (𝑢 + 𝑣) reduces to 𝑓 (𝑢) + 𝑓 (𝑣) and 𝑓 (𝑎.𝑢) reduces to 𝑎.𝑓 (𝑢).
Another option, which we follow here since we are most interested
in logic, is to enforce linearity with Linear Logic.

2 LINEAR LOGIC AND ITS LINEARITY
Linear Logic [26] is called “linear” since its models are linear in
the algebraic sense: the mappings between two propositions are
modelled by linear maps. However, within the proof languages of
linear logic, this linearity is usually not expressible in its syntax.
Indeed, the properties 𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣) and 𝑓 (𝑎.𝑢) = 𝑎.𝑓 (𝑢)
would require a syntactic sum and scalar multiplication.

This mismatch has been addressed by the LS-calculus [16], a
proof language for intuitionistic multiplicative additive linear logic
(IMALL). On this calculus, two proof-terms of a proposition 𝐴 can
be added to generate a new proof-term of 𝐴, and a proof-term of a
proposition 𝐴 can be multiplied by a scalar from the semiring S,
giving a new proof-term of 𝐴. That is, the following trivially valid
interstitial rules are considered

Γ ⊢ 𝐴 Γ ⊢ 𝐴
Γ ⊢ 𝐴 sum Γ ⊢ 𝐴

Γ ⊢ 𝐴 prod(𝑠)

with proof-terms 𝑡 + 𝑢 for the first, and 𝑠 • 𝑡 for the second, where
𝑡 and 𝑢 are proof-terms of 𝐴 and 𝑠 is a scalar in the given field S.

Adding these rules permits building proofs that cannot be re-
duced because the introduction rule of some connective and its
elimination rule are separated by an interstitial rule. For example,

𝜋1
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ⊕ 𝐵
⊕-i1

𝜋2
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ⊕ 𝐵
⊕-i1

Γ ⊢ 𝐴 ⊕ 𝐵
sum 𝜋3

Γ, 𝐴 ⊢ 𝐶
𝜋4

Γ, 𝐵 ⊢ 𝐶
Γ ⊢ 𝐶 ⊕-e

Reducing such a proof, sometimes called a commuting cut, requires
reduction rules to commute the rule sum either with the elimination
rule below or with the introduction rules above.

The commutation with the introduction rules above is not always
possible, for example in the proof

𝜋1
Δ1 ⊢ 𝐴

𝜋2
Δ2 ⊢ 𝐵

Γ ⊢ 𝐴 ⊗ 𝐵
⊗-i

𝜋3
Δ3 ⊢ 𝐴

𝜋4
Δ4 ⊢ 𝐵

Γ ⊢ 𝐴 ⊗ 𝐵
⊗-i

Γ ⊢ 𝐴 ⊗ 𝐵
sum



Alejandro Díaz-Caro, Gilles Dowek, and Octavio Malherbe

where Δ1,Δ2 = Γ = Δ3,Δ4, it is not. Thus, in these cases the
commutation with the elimination rule below is preferred. In the
LS-calculus, the commutation of the interstitial rules with the
introduction rules is chosen, rather than with the elimination rules,
whenever it is possible, that is for all connectives except the dis-
junction and the multiplicative conjunction. For example, the proof

𝜋1
Γ ⊢ 𝐴

𝜋2
Γ ⊢ 𝐵

Γ ⊢ 𝐴 & 𝐵
&-i

𝜋3
Γ ⊢ 𝐴

𝜋4
Γ ⊢ 𝐵

Γ ⊢ 𝐴 & 𝐵
&-i

Γ ⊢ 𝐴 & 𝐵
sum

reduces to
𝜋1

Γ ⊢ 𝐴
𝜋3

Γ ⊢ 𝐴
Γ ⊢ 𝐴 sum

𝜋2
Γ ⊢ 𝐵

𝜋4
Γ ⊢ 𝐵

Γ ⊢ 𝐵 sum

Γ ⊢ 𝐴 & 𝐵
&-i

Such a choice of commutation yields a stronger introduction
property for the considered connective.

The proof-terms considering sums and scalar multiplication are
reminiscent of other calculi used in similar ways for quantum com-
puting and algebraic lambda-calculi [2–6, 17–22, 40, 44, 45].

In the same way as the rule prod(𝑠) expresses a family of rules
(one for each 𝑠 ∈ S), there are also as many proofs of 1 as elements
in S. So, we write 𝑠 .★, instead of just★, the valid proofs of 1. Hence,
1 can be naturally interpreted as S, and the proofs 𝑣 of 1𝑛 =

∧𝑛
𝑖=1 1

(for any parentheses) are in one-to-one correspondence with the
elements 𝑣 of S𝑛 .

In the LS-calculus, any closed proof 𝑡 of the proposition 1𝑛 ⊸
1𝑚 can be proved to be linear in the syntactic sense. That is, if𝑢 and
𝑣 are proofs of 1𝑛 , then 𝑡 (𝑢 + 𝑣) is computationally equivalent to
𝑡𝑢+𝑡𝑣 and 𝑡 (𝑠 •𝑢) is computationally equivalent to 𝑠 •𝑡𝑢. Moreover,
any linear map 𝑓 : S𝑛 −→ S𝑚 has a representation in a proof-term
⊢ 𝑓 : 1𝑛 ⊸ 1𝑚 such that for all 𝑣 ∈ S𝑛 we have that the proof-term
𝑓 (𝑣) is equivalent to the proof-term 𝑓 𝑣 (that is, the application of
𝑓 to 𝑣). This makes the calculus suitable to express matrices and
vectors naturally, and thus, measurement-free quantum programs.

In [23] we give a categorical semantics for the LS-calculus in a
symmetric monoidal closed category with a monomorphism from
the field of scalars (in fact, a semiring is enough for the calculus) to
the semiring Hom(𝐼 , 𝐼 ). While linear logic has been pointed out as
the logic of quantum computing, due to the no-cloning theorem, it
is not enough to express all the possible quantum operations. For
example, the quantum measurement is not a linear operation.

3 NON-DETERMINISM AS A LOGICAL
CONNECTIVE

In [15] it is introduced a new connective to Natural Deduction, ⊙
(read “sup” for superposition), to express the superposition of data
and the measurement operation. This new connective arises from
the following observation. A superposition behaves as a conjunc-
tion, where both propositions are true (and so, its proof is the pair
of proofs), but also, when measured, it behaves as a disjunction,
where only one proposition will be recovered in a non-deterministic
process. The ⊙-calculus contains, other than the sup connective,
sums and scalar product, which allows encoding a basic quantum

lambda calculus. This calculus shows that superposition and mea-
surement can be represented as this new connective. In that paper,
the question of no-cloning (already solved using linear logic), or
unitarity of maps (already solved using some definition of orthogo-
nality well-formedness rules [2, 18, 21]) have been left apart. In [16]
we also show how to combine the ⊙ connective with linear logic.

In [23] we focus on modelling this non-deterministic connec-
tive ⊙ in the linear logic setting, however, we transformed into a
probabilistic connective instead: We defined the L⊙Sp-calculus,
a probabilistic variant of the LS-calculus, extended with the ⊙
connective.

The L⊙Sp-calculus differentiates itself from other approaches
to non-deterministic and probabilistic calculus [8, 9, 12, 13], where
the probabilities arise from terms like 𝑡 ⊕𝑝 𝑢 with 𝑡 and 𝑢 of
the same type. In contrast, our approach introduces probabilities
through a probabilistic pair destructor: fst and snd serve as de-
terministic pair destructors, while 𝛿pq⊙ is probabilistic. This way,
𝛿
pq
⊙ (⟨𝑡1, 𝑡2⟩, 𝑥 .𝑠1, 𝑦.𝑠2) can reduce to either (𝑡1/𝑥)𝑠1 or (𝑡2/𝑥)𝑠2 with
probabilities p and q respectively. As a consequence, the probabilis-
tic behaviour is an explicit elimination and is not triggered from an
introduction term. It also allows for a probabilistic choice among
elements of different types. In [15, 16] it is also shown how to
transform this connective into a measurement-like operation.

The model is also suitable for a (generalised) probabilistic cal-
culus, in the sense that instead of considering positive real scalars
adding to one, we consider the elements of a set of weights, which
are pairs (𝑝, 𝑞) ∈ Hom(𝐼 , 𝐼 ) × Hom(𝐼 , 𝐼 ) such that 𝑝 + 𝑞 = id𝐼 . In
the particular case of the category being that of semirings, with
Hom(𝐼 , 𝐼 ) = R≥0, it is instantiated in a proper probabilistic calculus.

A summary of the different calculi mentioned in this extended
abstract can be found in Table 1.

4 MODELLING PROBABILITIES
Introducing a non-deterministic (or a generalised probabilistic)
operator to a linear language is not straightforward, since adapting
the Powerset Monad, typically used to express non-deterministic
effects [33], is not easily applicable in every scenario. Our aim
was to use the a monoidal category, as it is common in Linear
Logic. To this introduction more intuitive, consider the concrete
category SMS of semimodules over the commutative semiring
S, which is one of the concrete examples in [23]. The arrows in
SMS are defined as the S-homomorphisms, which is a challenge.
The challenge arises from the fact that the mapping, which takes
the two non-deterministic outputs of a computation and returns
the set containing both, is not linear. Indeed, the mapping can be
represented as 𝜈 : 𝐴 ×𝐴 −→ P𝐴, where 𝜈 (𝑎1, 𝑎2) = {𝑎1, 𝑎2}. It can
be easily verified that 𝜈 ((𝑎1, 𝑎2) +

𝐴
(𝑎′1, 𝑎

′
2)) = {𝑎1 +

𝐴
𝑎′1, 𝑎2 +

𝐴
𝑎′2}

while 𝜈 (𝑎1, 𝑎2) +
𝐴
𝜈 (𝑎′1, 𝑎

′
2) = {𝑎1 +

𝐴
𝑎′1, 𝑎1 +

𝐴
𝑎′2, 𝑎2 +

𝐴
𝑎′1, 𝑎2 +

𝐴
𝑎′2}.

Another option to consider would be using lists instead of sub-
sets, because the sum of lists is pointwise, much like the sum of
pairs, which would address the issue. However, the pointwise sum
of lists does not capture our conception of what a non-deterministic
process should entail. To illustrate, suppose we have a program 𝑡

that non-deterministically produces the numerical results 𝑛1 and
𝑛2, and another program 𝑢 that non-deterministically yields 𝑚1
and𝑚2. If sum represents a program that takes two arguments and



From linear logic to quantum control

Calculus Reference Propositional logic Linear Logic Sup connective Non-determinism vs weights
⊙S-calculus [15] ✓ ✓ Non-determinism
LS-calculus [16, 23] ✓ None
L⊙S-calculus [16] ✓ ✓ Non-determinism
L⊙Sp-calculus [23] ✓ ✓ Probabilities

Table 1: Calculi.

performs addition, we would anticipate that the potential outcomes
of sum(𝑡,𝑢) encompass 𝑛1 +𝑚1, 𝑛1 +𝑚2, 𝑛2 +𝑚1, and 𝑛2 +𝑚2,
rather than solely 𝑛1 +𝑚1 and 𝑛2 +𝑚2.

Our approach was instead inspired by the density matrix formal-
ism (see, for example, [34, Section 2.4]), wherein we consider the
linear combination of results as a representation of a probability
distribution. In the particular case of a non-deterministic context
instead of the probabilistic one, the temptation might be to use
𝑡 +

𝐴
𝑢 to represent the non-deterministic outcomes 𝑡 and 𝑢. Given

that SMS has a biproduct, we can consider the following diagram,
involving the diagonal Δ = ⟨id, id⟩ and the codiagonal ∇ = [id, id].

𝐴

𝐴 𝐴 ⊕ 𝐴 𝐴

𝐴

Δ
idid

𝑖1

id

𝜋1 𝜋2

∇
id

𝑖2

This way, instead of using 𝜈 : 𝐴 ×𝐴 −→ P𝐴 to aggregate the two
results of a non-deterministic process, we can employ ∇ : 𝐴×𝐴 −→
𝐴, defined as ∇(𝑎1, 𝑎2) = 𝑎1 +

𝐴
𝑎2. However, this alternative gives

rise to another problem. Consider a scenario where we have a
program 𝑡 returning 𝑡1 or 𝑡2 of type 𝐴 non-deterministically, and
another program 𝑢 returning deterministically 𝑣 of type 𝐵. We
would expect that (𝑡,𝑢) returns both (𝑡1, 𝑣) and (𝑡2, 𝑣). Using ∇, it
is (𝑡1, 𝑣) +𝐴×𝐵 (𝑡2, 𝑣) = (𝑡1 +

𝐴
𝑡2, 𝑣 +

𝐵
𝑣). Nonetheless, if we first reduce

𝑡 , we would obtain (𝑡1 +
𝐴
𝑡2, 𝑢) and then (𝑡1 +

𝐴
𝑡2, 𝑣), which is not

equivalent to (𝑡1 +
𝐴
𝑡2, 𝑣 +

𝐵
𝑣).

In fact, the approach inspired by density matrices would only
work in the presence of probabilities. If, instead of reducing non-
deterministically to 𝑡1 and 𝑡2, we have a probability 𝑝 of yield-
ing 𝑡1 and a probability of 𝑞 for 𝑡2, with 𝑝 + 𝑞 = 1, considering
∇𝑝𝑞 (𝑎1, 𝑎2) = 𝑝 •

𝐴
𝑎1 +

𝐴
𝑞 •

𝐴
𝑎2, then the process (𝑡,𝑢) would re-

turn, employing ∇𝑝𝑞 , 𝑝 •
𝐴×𝐵 (𝑡1, 𝑣) +

𝐴×𝐵 𝑞 •
𝐴×𝐵 (𝑡2, 𝑣) = (𝑝 •

𝐴
𝑡1 +

𝐴

𝑞 •
𝐴
𝑡2, 𝑝 •𝐵 𝑣 +

𝐵
𝑞 •

𝐵
𝑣) = (𝑝 •

𝐴
𝑡1 +

𝐴
𝑞 •

𝐴
𝑡2, 𝑣) thus solving the issue.

Therefore, let 𝑝 be the mapping that multiplies its argument by
𝑝 . We can consider ∇𝑝𝑞 to be defined as [𝑝, 𝑞]. Similarly, we could
define Δ𝑝𝑞 = ⟨𝑝, 𝑞⟩, resulting in the following diagram.

𝐴

𝐴 𝐴 ⊕ 𝐴 𝐴

𝐴

Δ𝑝𝑞
𝑞𝑝

𝑖1

𝑝

𝜋1 𝜋2

∇𝑝𝑞
𝑞

𝑖2

This is the approach we used. Each probabilities process in the
L⊙Sp-calculus have a pair (𝑝, 𝑞) associated, from the set adding

to 1, or, more generically, the set {(𝑝, 𝑞) | (𝑝, 𝑞) ∈ Hom(𝐼 , 𝐼 ) ×
Hom(𝐼 , 𝐼 ), 𝑝 + 𝑞 = id𝐼 }. Thus, the category used, for any fixed
semiring S used by the language, is a symmetric monoidal closed
category with biproduct where there exists a monomorphism from
the S to the semiring Hom(𝐼 , 𝐼 ). In the particular case of S = R≥0,
the calculus is a probabilistic calculus.

Some related works
The probabilistic choice in linear logic has been studied in many
settings.

Compact closed categories. In [1], the authors proposed a cate-
gorical semantics of quantum protocols using symmetric monoidal
closed categories with biproducts, which are also compact. The
compactness property provides a notion of dagger, which gives
a natural definition of measurements in terms of the Born rule in
quantum mechanics. Thus, the main difference between our presen-
tation for a model of IMALL+⊙ and their presentation for a model
of quantum protocols is their reliance on a dagger operator and
their use of the compactness property for this purpose. Some prop-
erties in our presentation would be significantly easier to prove if
the category were compact closed (see [23, Remark 3.15]). However,
assuming compactness would limit the generality of the results.

Probabilistic coherent spaces. In [11], based on an idea from Gi-
rard [27], the authors proposed a model of linear logic using proba-
bilistic coherence spaces, interpreting types through continuous do-
mains. Morphisms in the associated category are Scott-continuous.
Additionally, they provide a probabilistic interpretation of terms,
extending PCF with a probabilistic choice construction which se-
lects a natural number from a probability distribution. They show
the denotational semantics of closed terms in their base type as
sub-probability distributions.

Cones. In [38], the author employed the concept of normed cones
to provide an interpretation for the probabilities inherent in quan-
tum programming. An abstract cone is analogous to an R-vector
space, except that scalars are drawn from the set of non-negative
real numbers. This idea has been further developed in [24], and
then proved to be a model of intuitionistic linear logic in [25]. In
addition, it is proved [10] that this model is a conservative extension
of the probabilistic coherent spaces.

Weighted relational models. In [31], the authors proposed amodel
of PCFR—that is, PCF with a probabilistic choice operator—based
on the category of weighted relations. The first main difference with
our approach is that they have a probabilistic choice operator, while
we have a probabilistic pair destructor, as mentioned in the previous
sections. The second difference is that they use a concrete model



Alejandro Díaz-Caro, Gilles Dowek, and Octavio Malherbe

in the category of matrices over a continuous semiring, while we
use an abstract categorical model. They also consider a fixed-point
operator, which is outside the scope of our work.

REFERENCES
[1] S. Abramsky and B. Coecke. 2004. A categorical semantics of quantum protocols.

In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science,
2004. 415–425.

[2] Thorsten Altenkirch and Jonathan Grattage. 2005. A functional quantum pro-
gramming language. In Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science (LICS 2005). IEEE, 249–258.

[3] Pablo Arrighi and Alejandro Díaz-Caro. 2012. A System F accounting for scalars.
Logical Methods in Computer Science 8(1:11) (2012).

[4] Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. 2017. The Vectorial
Lambda-Calculus. Information and Computation 254, 1 (2017), 105–139.

[5] Pablo Arrighi and Gilles Dowek. 2017. Lineal: A linear-algebraic Lambda-calculus.
Logical Methods in Computer Science 13, 1 (2017).

[6] Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoît
Valiron. 2014. Call-by-value, call-by-name and the vectorial behaviour of the
algebraic 𝜆-calculus. Logical Methods in Computer Science 10(4:8) (2014).

[7] Garrett Birkhoff and John von Neumann. 1936. The Logic of QuantumMechanics.
Annals of Mathematics 37, 4 (1936), 823–843.

[8] Gérard Boudol. 1994. Lambda-calculi for (strict) parallel functions. Information
and Computation 108, 1 (1994), 51–127.

[9] Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. 2007. Not Enough
Points Is Enough. In 21th International Workshop on Computer Science Logic (CSL
2007) (Lecture Notes in Computer Science, Vol. 4646). Springer, 268–282.

[10] Raphaëlle Crubillé. 2018. Probabilistic Stable Functions on Discrete Cones are
Power Series. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2018). ACM, 275–284.

[11] Vincent Danos and Thomas Ehrhard. 2011. Probabilistic coherence spaces as a
model of higher-order probabilistic computation. Information and Computation
209, 6 (2011), 966–991.

[12] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. 1996. Filter
Models for Conjunctive-Disjunctive lambda-Calculi. Theoretical Computer Science
170, 1-2 (1996), 83–128.

[13] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. 1998. A
filter model for concurrent lambda-calculus. SIAM Journal of Compututing 27, 5
(1998), 1376–1419.

[14] Alejandro Díaz-Caro. 2021. A quick overview on the quantum control approach
to the lambda calculus. In 16th Workshop on Logical and Semantic Frameworks
with Applications (LSFA 2021) (Electronic Proceedings in Theoretical Computer
Science, Vol. 357). Open Publishing Association, 1–17.

[15] Alejandro Díaz-Caro and Gilles Dowek. 2023. A new connective in natural
deduction, and its application to quantum computing. Theoretical Computer
Science 957 (2023), 113840.

[16] Alejandro Díaz-Caro and Gilles Dowek. 2024. A linear linear lambda-calculus.
Mathematical Structures in Computer Science (to appear) (2024).

[17] Alejandro Díaz-Caro, Gilles Dowek, and Juan Pablo Rinaldi. 2019. Two linearities
for quantum computing in the lambda calculus. BioSystems 186 (2019), 104012.
Post-proceedings of TPNC 2017.

[18] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron.
2019. Realizability in the Unitary Sphere. In Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2019). ACM, 1–13.

[19] Alejandro Díaz-Caro and Octavio Malherbe. 2019. A concrete categorical seman-
tics for Lambda-S. In Proceedings of the 13th Workshop on Logical and Semantic
Frameworks with Applications (LSFA 2018) (Electronic Notes in Theoretical Com-
puter Science, Vol. 344), Beniamino Accattoli and Carlos Olarte (Eds.). Elsevier,
83–100.

[20] Alejandro Díaz-Caro and Octavio Malherbe. 2020. A Categorical Construction
for the Computational Definition of Vector Spaces. Applied Categorical Structures
28, 5 (2020), 807–844.

[21] AlejandroDíaz-Caro andOctavioMalherbe. 2022. Quantum control in the unitary
sphere: Lambda-𝑆1 and its categorical model. Logical Methods in Computer Science

18, 3:32 (2022).
[22] Alejandro Díaz-Caro and Octavio Malherbe. 2023. A concrete model for a linear

algebraic lambda calculus. Mathematical Structures in Computer Science 34, 1
(2023), 1–44.

[23] Alejandro Díaz-Caro and Octavio Malherbe. 2024. The Sup Connective in IMALL:
A Categorical Semantics. Draft at arXiv:2205.02142.

[24] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable
cones and stable, measurable functions: a model for probabilistic higher-order
programming. In Proceedings of the ACM on Programming Languages (POPL 2017),
Vol. 2. ACM, 1–28.

[25] Thomas Ehrnard. 2020. Cones as a model of intuitionistic linear logic. In Pro-
ceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2020). ACM, 370–383.

[26] Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987),
1–102.

[27] Jean-Yves Girard. 2004. Between Logic and Quantic: a Tract. Cambridge University
Press, Cambridge, 346–381.

[28] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoît Valiron. 2013. Quipper: a scalable quantum programming language. ACM
SIGPLAN Notices 48, 6 (2013), 333–342.

[29] IBM Quantum. 2021. Qiskit. https://quantum-computing.ibm.com/.
[30] Emanuel Knill. 1996. Conventions for Quantum Pseudocode. Technical Report

LAUR-96-2724. Los Alamos National Lab.
[31] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. 2013.

Weighted relational models of typed lambda-calculi. In Proceedings of the 28rd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013). ACM,
301–310.

[32] Joachim Lambek and Philip Scott. 1988. Introduction to Higher-Order Categorical
Logic. Cambridge University Press.

[33] Eugenio Moggi. 1991. Notions of computation and monads. Information and
Computation 93, 1 (1991), 55–92.

[34] Michael Nielsen and Isaac Chuang. 2010. Quantum Computation and Quantum
Information (10th years anniversary ed.). Cambridge University Press, Cambridge,
UK.

[35] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core lan-
guage for quantum circuits. ACM SIGPLAN Notices 52, 1 (2017), 846–858.

[36] Lorenzo M. Procopio, Amir Moqanaki, Mateus Araújo, Fabio Costa, Irati Alonso
Calafell, Emma G. Dowd, Deny R. Hamel, Lee A. Rozema, Časlav Brukner, and
Philip Walther. 2015. Experimental superposition of orders of quantum gates.
Nature communications 6 (2015), 7913.

[37] Giulia Rubino, Lee A. Rozema, Adrien Feix, Mateus Araújo, Jonas M. Zeuner,
Lorenzo M. Procopio, Časlav Brukner, and Philip Walther. 2017. Experimental
verification of an indefinite causal order. Science advances 3, 3 (2017), e1602589.

[38] Peter Selinger. 2004. Toward a semantics for higher-order quantum computa-
tion. In 2nd International Workshop on Quantum Programming Languages (QPL
2004) (TUCS General Publication, Vol. 33), Peter Selinger (Ed.). Turku Centre for
Computer Science.

[39] Peter Selinger. 2004. Towards a quantum programming language. Mathematical
Structures in Computer Science 14, 4 (2004), 527–586.

[40] Peter Selinger and Benoît Valiron. 2006. A lambda calculus for quantum compu-
tation with classical control. Mathematical Structures in Computer Science 16, 3
(2006), 527–552.

[41] Heine Sørensen and Paweł Urzyczyin. 2006. Lectures on the Curry-Howard
Isomorphism. Studies in Logic and the Foundations of Mathematics, Vol. 149.
Elsevier.

[42] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development
with a High-Level DSL. In Real World Domain Specific Languages Workshop
(RWDSL 2018) (ICPS Proceedings). ACM, New York, USA, 7:1–7:10.

[43] André van Tonder. 2004. A Lambda Calculus for Quantum Computation. SIAM
Journal of Computing 33, 5 (2004), 1109–1135.

[44] Lionel Vaux. 2009. The algebraic lambda calculus. Mathematical Structures in
Computer Science 19, 5 (2009), 1029–1059.

[45] Margherita Zorzi. 2016. On quantum lambda calculi: a foundational perspective.
Mathematical Structures in Computer Science 26, 7 (2016), 1107–1195.


	1 The logic of quantum physics
	2 Linear logic and its linearity
	3 Non-determinism as a logical connective
	4 Modelling probabilities
	References

