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As a key concept that distinguishes quantum from classical models, we study non-locality in qudit
systems. Although non-locality has been extensively studied for qubits, some findings from their two-level
counterparts do not generalize to higher-dimensional systems. In contrast to qubits, qudit stabilizer
states cannot display Bell non-locality with Clifford operators [5, 7]. As a further testimony of their
semi-classical nature, they have non-negative Gross’s Wigner functions [2]. Since Wigner negativity has
been shown to be equivalent to contextuality, a generalization of non-locality, in qudit systems [1], it is a
necessary prerequisite for non-locality, either present in the state or in the measurement.

We propose a family of Bell inequalities on two qudits for any finite odd prime dimension d by
constructing a bipartite Bell operator that consists of stabilizer elements of the qudit Bell state under the
local adjoint action of a non-Clifford unitary operator. The Bell state maximally violates the corresponding
Bell inequality as a result of the difference between the 1-norm and maximum norm and the Wigner
negativity from the non-Clifford operators. The Bell inequality is a natural extension of the Clauser-Horne-
Shimony-Holt (CHSH) inequality for qubits, which is a linear combination of Pauli operators under local
rotation of the T -gate. Moreover, the Bell operator not only serves as a measure for the singlet fraction,
but also quantifies the volume of Wigner negativity. We are able to adapt the Bell operator on multiple
qudits such that given stabilizer state maximally violates it with similar implications as for the bipartite
case. Additionally, we demonstrate deterministic violations and violations with a constant number of
measurements for the bipartite Bell state, relying on operators innate to higher-dimensional systems than
the qudit at hand.

The unitary qudit operators X and Z are a natural generalization of the qubit Pauli operators σx and
σz. They fulfill X |k⟩ = |(k+ 1)modd ⟩ and Z|k⟩ = ωk|k⟩, with the dth root of unity ω = exp(2πi/d),
and the relation ZzXx = ωxzXxZz for x,z ∈ Zd . The general qudit Pauli operators are the Heisenberg-
Weyl displacement operators T(x,z) = ω2−1xzXxZz. By applying the Fourier transform, we obtain positive
Hermitian operators

A(ux,uz) =
1
d ∑

(vx,vz)∈Z2n
d

ω
uzvx−uxvzT(vx,vz) , (1)

which form an orthonormal basis in the vector space of operators equipped with the Hilbert-Schmidt inner
product (A,B) := tr

(
A†B

)
. Gross’ Wigner function is then defined by

W(ux,uz)(ρ) :=
1
d

tr
(
A(ux,uz)ρ

)
. (2)

The Bell state |Φ⟩= ∑
d−1
k=0 |k k⟩/

√
d is stabilized by the Pauli operators T(x,z)⊗T(x,−z)|Φ⟩= |Φ⟩, and

has a non-negative Wigner function. To induce Wigner negativity, we use an extension of the qubit
T -gate to qudits introduced by Howard and Vala [6] who provide an analytic expression for diagonal
non-Clifford unitary operators that map Pauli to Clifford operators, which we call unitary cube operators,
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Uν = ∑
d−1
k=0 ωνk |k⟩⟨k| , with the third-order polynomial deg(νk) = 3 in the finite field Zd . The Bell

state under the adjoint action of unitary cube operators has a Wigner function with negative values,
W ν

v1,v2
:=Wv1,v2 (Uν ⊗1) |Φ⟩⟨Φ|

(
U†

ν ⊗1
)

.
For d > 3, the Wigner function is determined by the character sum with a third-order odd polynomial.

For general odd primes d, such polynomials are difficult to analyze analytically, but values a1,a3 such
that Wu1,u2(|Φν⟩⟨Φν |)< 0 always exist and can be found efficiently with an exhaustive brute-force search.
Unitary operators beyond the unitary cube operators, for instance, from higher-degree polynomials over
finite fields, can achieve larger Wigner negativity and enhance non-local violations. A measure of the
amount of Wigner negativity of a state ρ is its volume N[ρ] = (∑u |Wu(ρ)|−1)/2.

For the first Bell operator, we measure the operators that make up the Wigner function in (1) to exploit
the Wigner negativity of the stabilizer states under unitary cube operators. To highlight the negative
values, a favorable coefficient distinguishes the negative values from the positive ones, for which we use
the Wigner function itself, resulting in the Bell operator

Bν = ∑
v1,v2∈Z2

d

W ν
v1,v2

Uν Av1U
†
ν ⊗ Av2 . (3)

Since we measure a complete set of operators Av, the lhv model assigns deterministic classical values
d ⟨Au⟩lhv∗ = d2δu,a for a ∈ Z2

d to its local marginals (lhv∗) and, hence, ⟨Bν⟩lhv∗ = d2W ν
a1,a2

. As a result,
any lhv model can maximally achieve

⟨Bν⟩lhv ≤ max
v1,v2∈Z2

d

d2W ν
v1,v2

=: Bmax
lhv , while tr(Bν |Φ⟩⟨Φ|) = ∑

v1,v2∈Z2
d

d2(W ν
v1,v2

)2 = 1 ,

is the expectation value for the Bell state. Since the eigenvalues of Au are bounded by dn (and here, n = 2),
Bmax

lhv < tr(Bν |Φ⟩⟨Φ|) from the Wigner negativity N > 0 and the norm inequality ∥ ·∥∞ ≤ ∥·∥1 in compact
spaces. The normalization of the Bell operator has been chosen such that tr(Bνρ) = ⟨Φ|ρ|Φ⟩ , provides a
measure for the singlet fraction with tr(Bν |Φ⟩⟨Φ|) = 1. Furthermore, it provides a lower bound for the
volume of Wigner negativity tr(Bνρ)≤ tr(Bνσ)≤ Bmax

lhv (1+2N
[
(Uν ⊗1)σ(U†

ν ⊗1)
]
) ,

For a more compact Bell operator, we focus solely on the stabilizer elements, T(x,z)⊗T(x,−z)|Φ⟩= |Φ⟩,
which reduces the number of measurements from (d +1)2 to (d +1), and leads to

B′
ν = ∑

x,z,t∈Zd

W (ν)
(x,z),(x,−z) UνA(x,z)U

†
ν ⊗ A(x,t−z) . (4)

The expectation values have the same form as for the full Bell operator, but the summation and maximum
take only coefficients x,z, t ∈ Zd . The operator is also a measure of the singlet fraction and the volume of
Wigner negativity.

For qutrits, all unitary operators defined by character polynomials are Clifford operators. Therefore,
the third root of the characters, (−1)1/9 = ω1/3, is necessary in [6] but we can derive a Wigner function
that yields equivalent results when applied to the Bell operators in Eqs. (3)-(6). However, operators with a
spectrum beyond the qudit characters, in contrast to those whose eigenvalues are ωa for some integer a,
appear to achieve stronger Bell violations as showcased in [8] for qutrit GHZ states.

Likewise, we present a Bell operator with diagonal unitary operators Vq = ∑k∈Zd
ωkq|k⟩⟨k|, where q is

a non-integer rational number and Xq =VqX(Vq)
†. These operators have an obvious advantage, which

is resorting to phases ωq that are beyond the description of any local value assignment, which can only
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resort to characters ωk. Then, the Bell operator

B(1/2) =
1
d ∑

k∈Zd

Xk
(1/2)⊗

(
Xk
(1/2)+ω

−kXk
(−1/2)

)
+Xk

(−1/2)⊗
(

Xk
(−1/2)+ω

−kXk
(1/2)

)
, (5)

leads to a Bell inequality ⟨B(1/2)⟩ lhv ≤ 3. In contrast, the Bell state has an expectation value ⟨Φ|B|Φ⟩= 4
that achieves a deterministic violation. One can even reduce the number of operators and only consider
k = 1,d −1 in Eq. (5). Then, an lhv model can achieve ⟨B′

(1/2)⟩ lhv ≤ 3+ cos(4π/d)< 4. As a trade-off,
the separation between the classical and quantum models grows smaller with increasing d.

Lastly, we generalize the Bell operator in Eq. (4) to any n-qudit stabilizer state |S⟩ with elements
Suuu = ω [aaa,uuu]Tuuu for all uuu ∈ Σ ⊂ Z2n

d . For a unitary cube operator Uν acting on the first qudit,

BS = ∑
uuu∈Σ,q∈Zd

W ν
uuu
(
Uν Au1+(0,t)U

†
ν

) n⊗
i=2

Aui . (6)

The operator BS is a measure for the overlap with the given stabilizer state under the condition that
((0,Zd)1 ⊗ (0,0)⊗n−1) ⊂ Σ, which is exactly the case if |S⟩ is entangled over the cut of the first qudit.
Then, ⟨S|BS|S⟩ = 1, while ⟨BS⟩lhv ≤ dn maxuuu∈ΣW ν

uuu < 1. A family of Bell operators, where the unitary
cube operator Uν acts on a different qudit, can detect if all qudits are entangled with any other qudit but
does not expose genuine multipartite entanglement.
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